191 resultados para Wayland (Mass.)--Maps
Resumo:
The thermal degradation products of two sulfur polymers, poly(styrenedisulfide) (PSD) and poly(styrenetetrasulfide) (PST), were investigated in parallel by direct pyrolysis-mass spectrometry (DPMS) and by flash pyrolysis-GC/MS (Py-GC/MS). The time-scale of the two pyrolysis techniques is quite different, and therefore they were able to detect significantly different products in the pyrolysis of PSD and PST because of the thermal lability of sulfur-containing compounds. However, the results obtained are not contradictory, and satisfactory mechanisms for the thermal degradation of PSD and PST have been derived from the overall evidence available. Pyrolysis compounds containing sulfur, styrene, and a number of cyclic styrene sulfides and diphenyldithianes have been observed by DPMS. However, in flash pyrolysis-GC/MS, styrene, sulfur, only one cyclic styrene sulfide, and two isomers of diphenylthiophene have been detected. These thiophene derivatives were indeed absent among the compounds obtained by DPMS because they were the terminal (most thermally stable) species arising from further decomposition of the cyclic styrene sulfides formed in the primary thermal degradation processes of PSD and PST.
Resumo:
The distributed implementation of an algorithm for computing fixed points of an infinity-nonexpansive map is shown to converge to the set of fixed points under very general conditions.
Resumo:
The characteristics of the hot deformation of Zr-2.5Nb (wt-%) in the temperature range 650-950 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. Two different preform microstructures: equiaxed (alpha + beta) and beta transformed have been investigated. For this study, the approach of processing maps has been adopted and their interpretation carried out using the dynamic materials model. The efficiency of power dissipation given by [2m/(m + 1)], where m is the strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. A domain of dynamic recrystallisation has been identified in the maps of equiaxed (alpha + beta) and beta transformed preforms. In the case of equiaxed (alpha + beta), the stress-strain curves are steady state and the dynamic recrystallisation domain in the map occurs with a peak efficiency of 45% at 850 degrees C and 0.001 s(-1). On the other hand the beta transformed preform exhibits stress-strain curves with continuous flow softening. The corresponding processing map shows a domain of dynamic recrystallisation occurring by the shearing of alpha platelets followed by globularisation with a peak efficiency of 54% at 750 degrees C and 0.001 s(-1). The characteristics of dynamic recrystallisation are analysed on the basis of a simple model which considers the rates of nucleation and growth of recrystallised gains. Calculations show that these two rates are nearly equal and that the nucleation of dynamic recrystallisation is essentially controlled by mechanical recovery involving the cross-slip of screw dislocations. Analysis of flow instabilities using a continuum criterion revealed that Zi-2.5Nb exhibits flow localisation at temperatures lower than 700 degrees C and strain rates higher than 1 s(-1).
Resumo:
The characteristics of hot deformation of beta-quenched Zr-2.5Nb-0.5Cu in the temperature range 650-1050 degrees C and in the strain rate range 0.001-100 s(-1) have been studied using hot compression testing. For this study, the approach of processing maps has been adopted and their interpretation done using the Dynamic Materials Model. The efficiency of power dissipation given by [2m/(m + 1)], where m is strain rate sensitivity, is plotted as a function of temperature and strain rate to obtain a processing map. The processing map for Zr-2.5Nb-0.5Cu within (alpha + beta) phase field showed a domain of dynamic recrystallization, occurring by shearing of alpha-platelets followed by spheroidization, with a peak efficiency of 48% at 750 degrees C and 0.001 s(-1). The stress-strain curves in this domain had features of continuous flow softening and all these are similar to that in Zr-2.5Nb alloy. In the beta-phase field, a second domain with a peak efficiency of 47% occurred at 1050 degrees C and 0.001 s(-1) and this domain is correlated with the superplasticity of beta-phase. The beta-deformation characteristics of this alloy are similar to that observed in pure beta-zirconium with large grain size. Analysis of flow instabilities using a continuum criterion revealed that the Zr-2.5Nb-0.5Cu exhibits flow localization at temperatures higher than 800 degrees C and strain rates higher than about 30 s(-1) and that the addition of copper to Zr-2.5Nb reduces its susceptibility to flow instability, particularly in the (alpha + beta) phase field.
Resumo:
The development of microstructure in 316L stainless steel during industrial hot forming operations including press forging (strain rate of 0 . 15 s(-1)), rolling/extrusion (strain rate of 2-8 . 8 s(-1)), and hammer forging (strain rate of 100 s(-1)) at different temperatures in the range 600-1200 degrees C was studied with a view to validating the predictions of the processing map. The results showed that good col relation existed between the regimes indicated in the map and the product microstructures. The 316L stainless steel exhibited unstable flow in the form of flow localisation when hammer forged at temperatures above 900 degrees C, rolled below 1000 degrees C, or press forged below 900 degrees C. All these conditions must therefore be avoided in mechanical processing of the material. Conversely, in order to obtain defect free microstructures, ideally the material should be rolled at temperatures above 1100 degrees C, press forged at temperatures above 1000 degrees C, or hammer forged in the temperature range 600-900 degrees C. (C) 1996 The Institute of Materials.
Resumo:
The deformation characteristics of stainless steel type AISI 3O4 under compression in the temperature range 20 degrees C to 600 degrees C and strain-rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At strain rates less than 5 s(-1), 304 stainless steel exhibits flow localization, whereas dynamic strain aging occurs at intermediate temperatures and below 0.5 s(-1). At room temperatures and strain rates less than 10 s(-1), martensite formation is observed. To avoid the preceding microstructural instabilities, cold and warm working should be carried out at strain rates greater than 5 s(-1). The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the preceding instability features.
Resumo:
The effect of surface mass transfer on buoyancy induced flow in a variable porosity medium adjacent to a heated vertical plate is studied for high Rayleigh numbers. Similarity solutions are obtained within the frame work of boundary layer theory for a power law variation in surface temperature,T Wpropx lambda and surface injectionv Wpropx(lambda–1/2). The analysis incorporates the expression connecting porosity and permeability and also the expression connecting porosity and effective thermal diffusivity. The influence of thermal dispersion on the flow and heat transfer characteristics are also analysed in detail. The results of the present analysis document the fact that variable porosity enhances heat transfer rate and the magnitude of velocity near the wall. The governing equations are solved using an implicit finite difference scheme for both the Darcy flow model and Forchheimer flow model, the latter analysis being confined to an isothermal surface and an impermeable vertical plate. The influence of the intertial terms in the Forchheimer model is to decrease the heat transfer and flow rates and the influence of thermal dispersion is to increase the heat transfer rate.
Resumo:
The deformation characteristics of stainless steel type AISI 316L under compression in the temperature range 20 to 600 degrees C and strain rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At temperatures lower than 100 degrees C and strain rates higher than 0.1 s(-1), 316L stainless steel exhibits flow localization whereas dynamic strain aging (DSA) occurs at intermediate temperatures and below 1 s(-1). To avoid the above flow instabilities, cold working should be carried out at strain rates less than 0.1 s(-1). Warm working of stainless steel type AISI 316L may be done in the temperature and strain rate regime of: 300 to 400 degrees C and 0.001 s(-1) 300 to 450 degrees C and 0.01 s(-1): 450 to 600 degrees C and 0.1 s(-1); 500 degrees C and 1 s(-1) since these regions are free from flow instabilities like DSA and flow localization. The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.
Resumo:
The hot workability of an Al-Mg-Si alloy has been studied by conducting constant strain-rate compression tests. The temperature range and strain-rate regime selected for the present study were 300-550 degrees C and 0.001-1 s(-1), respectively. On the basis of true stress data, the strain-rate sensitivity values were calculated and used for establishing processing maps following the dynamic materials model. These maps delineate characteristic domains of different dissipative mechanisms. Two domains of dynamic recrystallization (DRX) have been identified which are associated with the peak efficiency of power dissipation (34%) and complete reconstitution of as-cast microstructure. As a result, optimum hot ductility is achieved in the DRX domains. The strain rates at which DRX domains occur are determined by the second-phase particles such as Mg2Si precipitates and intermetallic compounds. The alloy also exhibits microstructural instability in the form of localized plastic deformation in the temperature range 300-350 degrees C and at strain rate 1 s(-1).
Resumo:
Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.
Resumo:
The domain of dynamic recrystallization (DRX) in as-cast 304 stainless steel material occurs at higher temperatures (1250 degrees C) and lower strain rates (0.001 s(-1)) than in wrought 304 stainless steel (1100 degrees C and 0.01 s(-1)). The above result has been explained earlier on the basis of a simple theoretical DRX model involving the rate of nucleation versus rate of grain boundary migration. The present investigation is aimed at examining experimentally the influence of carbide particles on the DRX of ascast 304 using secondary ion mass spectrometric (SIMS) analysis. Isothermal compression tests at a constant true strain rate have been performed on wrought 304 and as-cast 304 materials in the temperature and strain rate ranges of 1000 to 1250 degrees C and 0.001 to 1 s(-1) respectively. The SIMS analysis carried out on the deformed samples revealed that the large carbides present in the as-cast 304 material strongly influence the DRX process. In as-cast 304 material, the presence of large carbide particles in the microstructure shifts the DRX domain to higher temperature and lower strain rate in comparison with wrought 304 material.
Resumo:
The effect of various milling parameters such as, milling intensity, ball:powder weight ratio and number of balls on the glass forming ability of an elemental blend of composition Ti50Ni50 has been studied by mechanical alloying. In order to understand the results, all the milling parameters have been converted into two energy parameters, namely, impact energy of the ball and the total energy of milling. In a milling map of these two parameters, the conditions for amorphous phase formation have been isolated. A similar exercise has been carried out for Ti50Cu50 as a function of milling time at two milling intensities. The results indicate that a minimum impact energy of the ball and a minimum total energy are essential for amorphization by mechanical alloying.
Resumo:
This paper investigates the loss of high mass ions due to their initial thermal energy in ion trap mass analyzers. It provides an analytical expression for estimating the percentage loss of ions of a given mass at a particular temperature, in a trap operating under a predetermined set of conditions. The expression we developed can be used to study the loss of ions due to its initial thermal energy in traps which have nonlinear fields as well as those which have linear fields. The expression for the percentage of ions lost is shown to be a function of the temperature of the ensemble of ions, ion mass and ion escape velocity. An analytical expression for the escape velocity has also been derived in terms of the trapping field, drive frequency and ion mass. Because the trapping field is determined by trap design parameters and operating conditions, it has been possible to study the influence of these parameters on ion loss. The parameters investigated include ion temperature, magnitude of the initial potential applied to the ring electrode (which determines the low mass cut-off), trap size, dimensions of apertures in the endcap electrodes and RF drive frequency. Our studies demonstrate that ion loss due to initial thermal energy increases with increase in mass and that, in the traps investigated, ion escape occurs in the radial direction. Reduction in the loss of high mass ions is favoured by lower ion temperatures, increasing low mass cut-off, increasing trap size, and higher RF drive frequencies. However, dimensions of the apertures in the endcap electrodes do not influence ion loss in the range of aperture sizes considered. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A simple method to generate time domain tailored waveforms for excitation of ion axial amplitude in Paul trap mass spectrometers is described. The method is based on vector summation of sine waves followed by time domain sampling to obtain the discrete time domain data. A smoothing technique based on the time domain Kaiser window is then applied to the data so as to minimize the frequency domain Gibb's oscillations. The dynamic range of the time domain signal is controlled by phase modulation and time extension of the time domain waveform. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
A transient macroscopic model is developed for studying heat and mass transfer in a single-pass laser surface alloying process, with particular emphasis on non-equilibrium solidification considerations. The solution for species concentration distribution requires suitable treatment of non-equilibrium mass transfer conditions. In this context, microscopic features pertaining to non-equilibrium effects on account of solutal undercooling are incorporated through the formulation of a modified partition-coefficient. The effective partition-coefficient is numerically modeled by Means of a number of macroscopically observable parameters related to the solidifying domain. The numerical model is so developed that the modifications on account of non-equilibrium solidification considerations can be conveniently implemented in existing numerical codes based on equilibrium solidification considerations.