142 resultados para Walls


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A transmission electron microscopy study has been carried out on the domain structures of SrBi2Nb2O9 (SBN) ferroelectric ceramics which belong to the Aurivillius family of bismuth layered perovskite oxides. SBN is a potential candidate for Ferroelectric Random access memory (FeRAM) applications. The 90° ferroelectric domains and antiphase boundaries (APBs) were identified with dark field imaging techniques using different superlattice reflections which arise as a consequence of octahedral rotations and cationic shifts. The 90° domain walls are irregular in shape without any faceting. The antiphase boundaries are less dense compared to that of SrBi2Ta2O9(SBT). The electron microscopy observations are correlated with the polarization fatigue nature of the ceramic where the domain structures possibly play a key role in the fatigue- free behavior of the Aurivillius family of ferroelectric oxides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A flow-induced instability in a tube with flexible walls is studied experimentally. Tubes of diameter 0.8 and 1.2 mm are cast in polydimethylsiloxane (PDMS) polymer gels, and the catalyst concentration in these gels is varied to obtain shear modulus in the range 17–550 kPa. A pressure drop between the inlet and outlet of the tube is used to drive fluid flow, and the friction factor $f$ is measured as a function of the Reynolds number $Re$. From these measurements, it is found that the laminar flow becomes unstable, and there is a transition to a more complicated flow profile, for Reynolds numbers as low as 500 for the softest gels used here. The nature of the $f$–$Re$ curves is also qualitatively different from that in the flow past rigid tubes; in contrast to the discontinuous increase in the friction factor at transition in a rigid tube, it is found that there is a continuous increase in the friction factor from the laminar value of $16\ensuremath{/} Re$ in a flexible tube. The onset of transition is also detected by a dye-stream method, where a stream of dye is injected into the centre of the tube. It is found that there is a continuous increase of the amplitude of perturbations at the onset of transition in a flexible tube, in contrast to the abrupt disruption of the dye stream at transition in a rigid tube. There are oscillations in the wall of the tube at the onset of transition, which is detected from the laser scattering off the walls of the tube. This indicates that the coupling between the fluid stresses and the elastic stresses in the wall results in an instability of the laminar flow.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tendency of granular materials in rapid shear ow to form non-uniform structures is well documented in the literature. Through a linear stability analysis of the solution of continuum equations for rapid shear flow of a uniform granular material, performed by Savage (1992) and others subsequently, it has been shown that an infinite plane shearing motion may be unstable in the Lyapunov sense, provided the mean volume fraction of particles is above a critical value. This instability leads to the formation of alternating layers of high and low particle concentrations oriented parallel to the plane of shear. Computer simulations, on the other hand, reveal that non-uniform structures are possible even when the mean volume fraction of particles is small. In the present study, we have examined the structure of fully developed layered solutions, by making use of numerical continuation techniques and bifurcation theory. It is shown that the continuum equations do predict the existence of layered solutions of high amplitude even when the uniform state is linearly stable. An analysis of the effect of bounding walls on the bifurcation structure reveals that the nature of the wall boundary conditions plays a pivotal role in selecting that branch of non-uniform solutions which emerges as the primary branch. This demonstrates unequivocally that the results on the stability of bounded shear flow of granular materials presented previously by Wang et al. (1996) are, in general, based on erroneous base states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugars perform two vital functions in plants: as compatible solutes protecting the cell against osmotic stress and as mobile source of immediate and long-term energy requirement for growth and development. The two sugars that occur commonly in nature are sucrose and trehalose. Sucrose comprises one glucose and one fructose molecule; trehalose comprises two glucose molecules. Trehalose occurs in significant amounts in insects and fungi which greatly outnumber the plants. Surprisingly, in plants trehalose has been found in barely detectable amounts, if at all, raising the question `why did nature select sucrose instead of trehalose as the mobile energy source and as storage sugar for the plants'? Modelling revealed that when attached to the ribbon-shaped beta-1,4 glucan a trehalose molecule is shaped like a hook. This suggests that the beta-1,4 glucan chains with attached trehalose will fail to align to form inter-chain hydrogen bonds and coalesce into a cellulose microfibril, as a result of which in trehalose-accumulating plant cells, the cell wall will tend to become leaky. Thus in plants an evolutionary selection was made in favour of sucrose as the mobile energy source. Genetic engineering of plant cells for combating abiotic stresses through microbial trehalose-producing genes is fraught with risk of damage to plant cell walls.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Freshwater ecosystems vary in size and composition and contain a wide range of organisms which interact with each other and with the environment. These interactions are between organisms and the environment as nutrient cycling, biomass formation and transfer, maintenance of internal environment and interactions with the external environment. The range of organisms present in aquatic communities decides the generation and transfer function of biomass, which defines and characterises the system. These organisms have distinct roles as they occupy particular trophic levels, forming an interconnected system in a food chain. Availability of resources and competition would primarily determine the balance of individual species within the food web, which in turn influences the variety and proportions of the different organisms, with important implications for the overall functioning of the system. This dynamic and diverse relationship decides the physical, chemical and biological elements across spatial and temporal scales in the aquatic ecosystem, which can be recorded by regular inventorying and monitoring to maintain the integrity and conserve the ecosystem. Regular environmental monitoring, particularly water quality monitoring allows us to detect, assess and manage the overall impacts on the rivers. The appreciation of water quality is in constant flux. Water quality assessments derived through the biotic indices, i.e. assessments based on observations of the resident floral and faunal communities has gained importance in recent years. Biological evaluations provide a description of the water quality that is often not achievable from elemental analyses alone. A biological indicator (or bioindicator) is a taxon or taxa selected based on its sensitivity to a particular attribute, and then assessed to make inferences about that attribute. In other words, they are a substitute for directly measuring abiotic features or other biota. Bioindicators are evaluated through presence or absence, condition, relative abundance, reproductive success, community structure (i.e. composition and diversity), community function (i.e. trophic structure), or any combination thereof.Biological communities reflect the overall ecological integrity by integrating various stresses, thus providing a broad measure of their synergistic impacts. Aquatic communities, both plants and animals, integrate and reflect the effects of chemical and physical disturbances that occur over extended periods of time. Monitoring procedures based on the biota measure the health of a river and the ability of aquatic ecosystems to support life as opposed to simply characterising the chemical and physical components of a particular system. This is the central purpose of assessing the biological condition of aquatic communities of a river.Diatoms (Bacillariophyceae), blue green algae (Cyanophyceae), green algae (Chlorophyceae), and red algae (Rhodphyceae) are the main groups of algae in flowing water. These organisms are widely used as biological indicators of environmental health in the aquatic ecosystem because algae occupy the most basic level in the transfer of energy through natural aquatic systems. The distribution of algae in an aquatic ecosystem is directly related to the fundamental factors such as physical, chemical and biological constituents. Soft algae (all the algal groups except diatoms) have also been used as indicators of biological integrity, but they may have less efficiency than diatoms in this respect due to their highly variable morphology. The diatoms (Bacillariophyceae) comprise a ubiquitous, highly successful and distinctive group of unicellular algae with the most obvious distinguishing characteristic feature being siliceous cell walls (frustules). The photosynthetic organisms living within its photic zone are responsible for about one-half of global primary productivity. The most successful organisms are thought to be photosynthetic prokaryotes (cyanobacteria and prochlorophytes) and a class of eukaryotic unicellular algae known as diatoms. Diatoms are likely to have arisen around 240 million years ago following an endosymbiotic event between a red eukaryotic alga and a heterotrophic flagellate related to the Oomycetes.The importance of algae to riverine ecology is easily appreciated when one considers that they are primary producers that convert inorganic nutrients into biologically active organic compounds while providing physical habitat for other organisms. As primary producers, algae transform solar energy into food from which many invertebrates obtain their energy. Algae also transform inorganic nutrients, such as atmospheric nitrogen into organic forms such as ammonia and amino acids that can be used by other organisms. Algae stabilises the substrate and creates mats that form structural habitats for fish and invertebrates. Algae are a source of organic matter and provide habitat for other organisms such as non-photosynthetic bacteria, protists, invertebrates, and fish. Algae's crucial role in stream ecosystems and their excellent indicator properties make them an important component of environmental studies to assess the effects of human activities on stream health. Diatoms are used as biological indicators for a number of reasons: 1. They occur in all types of aquatic ecosystems. 2. They collectively show a broad range of tolerance along a gradient of aquatic productivity, individual species have specific water chemistry requirements. 3. They have one of the shortest generation times of all biological indicators (~2 weeks). They reproduce and respond rapidly to environmental change and provide early measures of both pollution impacts and habitat restoration. 4. It takes two to three weeks before changes are reflected to a measurable extent in the assemblage composition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Condensation of water droplets during rapid evaporation of a polymer solution, under humid conditions, has been known to generate uniformly porous polymer films. Similar porous films are also formed when a solution of the polymer in THF containing small amounts of water, is allowed to evaporate rapidly under air flow; this suggests that water droplets may be formed during the final stages of film formation. In the presence of added surfactants, the interface of water droplets could become lined with the surfactants and consequently the internal walls of the pores generated, upon removal of the water, could become decorated with the hydrophilic head groups of the surfactant molecules. In a series of carefully designed experiments, we have examined the effect of added surfactants, both anionic and cationic, on the formation of porous PMMA films; the films were prepared by evaporating a solution of the polymer in THF containing controlled amounts of aqueous surfactant solutions. We observed that the average size of the pores decreases with increasing surfactant concentration, while it increases with increasing amounts of added water. The size of the pores and their distribution were examined using AFM and IR imaging methods. Although IR imaging possessed inadequate resolution to confirm the presence of surfactants at the pore surface, exchange of the inorganic counterion, such as the sodium-ion of SDS, with suitable ionic organic dyes permitted the unequivocal demonstration of the presence of the surfactants at the interface by the use of confocal fluorescence microscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The generalizations of the Onsager model for the radial boundary layer and the Carrier-Maslen model for the end-cap axial boundary layer in a high-speed rotating cylinder are formulated for studying the secondary gas flow due to wall heating and due to insertion of mass, momentum and energy into the cylinder. The generalizations have wider applicability than the original Onsager and Carrier-Maslen models, because they are not restricted to the limit A >> 1, though they are restricted to the limit R e >> 1 and a high-aspect-ratio cylinder whose length/diameter ratio is large. Here, the stratification parameter A = root m Omega(2)R(2)/2k(B)T). This parameter A is the ratio of the peripheral speed, Omega R, to the most probable molecular speed, root 2k(B)T/m, the Reynolds number Re = rho w Omega R(2)/mu, where m is the molecular mass, Omega and R are the rotational speed and radius of the cylinder, k(B) is the Boltzmann constant, T is the gas temperature, rho(w) is the gas density at wall, and mu is the gas viscosity. In the case of wall forcing, analytical solutions are obtained for the sixth-order generalized Onsager equations for the master potential, and for the fourth-order generalized Carrier-Maslen equation for the velocity potential. For the case of mass/momentum/energy insertion into the flow, the separation-of-variables procedure is used, and the appropriate homogeneous boundary conditions are specified so that the linear operators in the axial and radial directions are self-adjoint. The discrete eigenvalues and eigenfunctions of the linear operators (sixth-order and second-order in the radial and axial directions for the Onsager equation, and fourth-order and second-order in the axial and radial directions for the Carrier-Maslen equation) are determined. These solutions are compared with direct simulation Monte Carlo (DSMC) simulations. The comparison reveals that the boundary conditions in the simulations and analysis have to be matched with care. The commonly used `diffuse reflection' boundary conditions at solid walls in DSMC simulations result in a non-zero slip velocity as well as a `temperature slip' (gas temperature at the wall is different from wall temperature). These have to be incorporated in the analysis in order to make quantitative predictions. In the case of mass/momentum/energy sources within the flow, it is necessary to ensure that the homogeneous boundary conditions are accurately satisfied in the simulations. When these precautions are taken, there is excellent agreement between analysis and simulations, to within 10 %, even when the stratification parameter is as low as 0.707, the Reynolds number is as low as 100 and the aspect ratio (length/diameter) of the cylinder is as low as 2, and the secondary flow velocity is as high as 0.2 times the maximum base flow velocity. The predictions of the generalized models are also significantly better than those of the original Onsager and Carrier-Maslen models, which are restricted to thin boundary layers in the limit of high stratification parameter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beginning with the ‘frog-leg experiment’ by Galvani (1786), followed by the demonstrations of Volta pile by Volta (1792) and lead-acid accumulator by Plante´ (1859), several battery chemistries have been developed and realized commercially. The development of lithium-ion rechargeable battery in the early 1990s is a breakthrough in the science and technology of batteries. Owing to its high energy density and high operating voltage, the Li-ion battery has become the battery of choice for various portable applications such as note-book computers, cellular telephones, camcorders, etc. Huge efforts are underway in succeeding the development of large size batteries for electric vehicle applications. The origin of lithium-ion battery lies in the discovery that Li+-ions can reversibly be intercalated into/de-intercalated from the Van der Walls gap between graphene sheets of carbon materials at a potential close to the Li/Li+ electrode. By employing carbon as the negative electrode material in rechargeable lithium-ion batteries, the problems associated with metallic lithium in rechargeable lithium batteries have been mitigated. Complimentary investigations on intercalation compounds based on transition metals have resulted in establishing LiCoO2 as the promising cathode material. By employing carbon and LiCoO2, respectively, as the negative and positive electrodes in a non-aqueous lithium-salt electrolyte,a Li-ion cell with a voltage value of about 3.5 V has resulted.Subsequent to commercialization of Li-ion batteries, a number of research activities concerning various aspects of the battery components began in several laboratories across the globe. Regarding the positive electrode materials, research priorities have been to develop different kinds of active materials concerning various aspects such as safety, high capacity, low cost, high stability with long cycle-life, environmental compatibility,understanding relationships between crystallographic and electrochemical properties. The present review discusses the published literature on different positive electrode materials of Li-ion batteries, with a focus on the effect of particle size on electrochemical performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Queens of the primitively eusocial wasp Ropalidia marginata are behaviourally docile and maintain their reproductive monopoly by rubbing their abdomen and applying a pheromone to the nest surface. We argued that the queen should be overthrown if she is prevented from applying her pheromone. To test this prediction we introduced the queen and her workers into a cage without the nest, thereby removing the substrate for pheromone application. Contrary to our expectation, queens maintained their status (in six out of seven experiments), by continuing to rub their abdomens (and presumably applying pheromone) to cage walls even in absence of the nest. Such attempts to apply pheromone to the cage are expected to be relatively inefficient as the surface area would be very large. Thus we found that the queens were aggressively challenged by the workers and they in turn reciprocated with aggression toward their workers. Such aggressive queen-worker interactions are almost nonexistent in natural colonies and were also not recorded in the control experiments (with nests present). Our results reinforce the idea that pheromone helps R. marginata queens maintain their status and more importantly, they also show that, if necessary, queens can also supplement the pheromone with physical aggression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the walls of the defective multiwall carbon nanotube (MWCNT), and give possible mechanism for the formation of defective structure. A generalized model has been proposed for the MWCNT. which consists of (a) catalyst part, (b) embryo part and (c) full grown part. We claim that the weak embryo portion of the MWCNT, is structurally undeveloped. The stress due to pressure imbalance between inside and outside of the MWCNT during growth along with axial load at the embryo portion causes distortion, which is the source of bending and making the walls of the MWCNT off-concentric. At the later stage the stressed embryo retain the distorted structure and get transformed into fully gown defective CNT. Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM). In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3688083]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminar natural convection between two coaxial vertical rectangular cylinders is numerically studied in this work. The outer cylinder is connected with vertical rectangular inlet and outlet pipes. The inner cylinder dissipates volumetric heat. The fluid flow and heat transfer characteristics between the cylinders are analyzed in detail for various Grashof numbers. The heat transfer rates on the individual faces of the inner cylinder are reported. The bottom face of the inner cylinder is found to associate with much higher heat rates than those of the other faces. The average Nusselt number on bottom face is more than 2.5 times of the Nusselt number averaged on all the faces. At a given elevation, local Nusselt number on the inner cylinder faces increases towards cylinder edges. The effect of thermal condition of the walls of outer cylinder, inlet and outlet on the natural convection is analyzed. The thermal condition shows strong qualitative and quantitative impact on the fluid flow and heat transfer. The variation of induced flow rate, dimensionless maximum temperature and average Nusselt numbers with Grashof number is studied. Correlations for dimensionless buoyancy-induced mass flow rate and temperature maximum are presented. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminar natural convection in a series of thermally interacting cavities is numerically studied. Each cavity consists of a conducting bottom wall with a surface mounted heater. The side walls of the cavities are isothermally cooled. Each cavity thermally interacts with its adjacent cavities through the conducting walls. Flow and heat transfer characteristics are studied in detail for various Rayleigh numbers. The convection characteristics in multiple cavities are compared with those in single independent cavity. The thermal interaction between the cavities results in lower temperatures compared with those in independent cavities. While heat is rejected into the adjacent upper cavity through some portion of the conducting wall, heat is received from the adjacent cavity through the remaining portion of the wall. The influence of substrate conductivity on heat exchange between adjacent cavities are examined. Substrate conductivity shows strong effect on temperature distribution. When cooling at both vertical sides is changed to one side cooling, the heat transfer characteristics are changed drastically and many interesting flow features are observed. Effects of cavity aspect ratio is studied and higher heat transfer rates are observed at higher aspect ratios. Correlations for dimensionless temperature maximum and average Nusselt number are presented in terms of Rayleigh number.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Novel ultrasound-sensitive nanocapsules were designed via layer-by-layer assembly (LbL) of polyelectrolytes for remote activated release of biomolecules/drug. Nanocapsules embedded with silver nanoparticles in the walls were synthesized by alternate assembly of poly(allylamine hydrochloride) (PAH) and dextran sulfate (DS) on silica template followed by nanoparticle synthesis and subsequent template removal thus yielding nanocapsules. The silver NPs were synthesized in situ within the capsule walls under controlled conditions. The nanocapsules were found to be well dispersed and the silver NPs were evenly distributed within the shell. FITC-dextran permeated easily into the capsules containing silver NP's due to the pores generated during the formation of NP's. When the loaded nanocapsules were sonicated, the presence of the silver NPs in the shell structure led to rupturing of the shell into smaller fragments thus releasing the FITC-dextran. Such nanocapsules have the potential to be used as drug delivery vehicles and offer the scope for further development in the areas of modern medicine, material science, and biochemistry. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most studies involving cement-stabilized soil blocks (CSSB) concern material properties, such as the characteristics of erosion and strength and how the composition of the block affects these properties. Moreover, research has been conducted on the performance of various mortars, investigating their material properties and the tensile bond strength between CSSB units and mortar. In contrast, very little is currently known about CSSB masonry structural behavior. Because structural design codes of traditional masonry buildings were well developed over the past century, many of the same principles may be applicable to CSSB masonry buildings. This paper details the topic of flexural behavior of CSSB masonry walls and whether the Masonry Standards Joint Committee (MSJC) code can be applied to this material for improved safety of such buildings. DOI: 10.1061/(ASCE)MT.1943-5533.0000566. (C) 2013 American Society of Civil Engineers.