102 resultados para VELVET ANTLER POLYPEPTIDE
Resumo:
Phenoloxidases are oxidative enzymes, which play an important role in both cell mediated and humoral immunity. Purification and biochemical characterization of prophenoloxidase from cotton bollworm, Helicoverpa armigera (Hubner) were carried out to study its biochemical properties. Prophenoloxidase consists of a single polypeptide chain with a relative molecular weight of 85 kDa as determined by SDSPAGE, MALDITOF MS and LCESI MS. After the final step, the enzyme showed 71.7 fold of purification with a recovery of 49.2%. Purified prophenoloxidase showed high specific activity and homology with phenoloxidase subunit-1 of Bombyx mori and the conserved regions of copper binding (B) site of phenoloxidase. Purified prophenoloxidase has pH optima of 6.8 and has high catalytic efficiency towards the dopamine as a substrate in comparison to catechol and L-Dopa. The PO activity was strongly inhibited by phenylthiourea, thiourea, dithiothreitol and kojic acid.
Resumo:
Domain swapping is an interesting feature of some oligomeric proteins in which each protomer of the oligomer provides an identical surface for exclusive interaction with a segment or domain belonging to another protomer. Here we report results of mutagenesis experiments on the structure of C-terminal helix swapped dimer of a stationary phase survival protein from Salmonella typhimurium (StSurE). Wild type StSurE is a dimer in which a large helical segment at the C-terminus and a tetramerization loop comprising two beta strands are swapped between the protomers. Key residues in StSurE that might promote C-terminal helix swapping were identified by sequence and structural comparisons. Three mutants in which the helix swapping is likely to be avoided were constructed and expressed in E. coli. Three-dimensional X-ray crystal structures of the mutants H234A and D230A/H234A could be determined at 2.1 angstrom and 2.35 angstrom resolutions, respectively. Contrary to expectations, helix swapping was mostly retained in both the mutants. The loss of the crucial D230 OD2- H234 NE2 hydrogen bond (2.89 angstrom in the wild type structure) in the hinge region was compensated by new inter and intra-chain interactions. However, the two fold molecular symmetry was lost and there were large conformational changes throughout the polypeptide. In spite of these changes, the dimeric structure and an approximate tetrameric organization were retained, probably due to the interactions involving the tetramerization loop. Mutants were mostly functionally inactive, highlighting the importance of precise inter-subunit interactions for the symmetry and function of StSurE.
Resumo:
Disulfide crosslinks are ubiquitous in natural peptides and proteins, providing rigidity to polypeptide scaffolds. The assignment of disulfide connectivity in multiple crosslinked systems is often difficult to achieve. Here, we show that rapid unambiguous characterisation of disulfide connectivity can be achieved through direct mass spectrometric CID fragmentation of the disulfide intact polypeptides. The method requires a direct mass spectrometric fragmentation of the native disulfide bonded polypeptides and subsequent analysis using a newly developed program, DisConnect. Technical difficulties involving direct fragmentation of proteins are surmounted by an initial proteolytic nick and subsequent determination of the structures of these proteolytic peptides through DisConnect. While the connectivity in proteolytic fragments containing one cystine is evident from the MS profile alone, those with multiple cystines are subjected to subsequent mass spectrometric fragmentation. The wide applicability of this method is illustrated using examples of peptide hormones, peptide toxins, proteins, and disulfide foldamers of a synthetic analogue of a marine peptide toxin. The method, coupled with DisConnect, provides an unambiguous, straightforward approach, especially useful for the rapid screening of the disulfide crosslink fidelity in recombinant proteins, determination of disulfide linkages in natural peptide toxins and characterization of folding intermediates encountered in oxidative folding pathways.
Resumo:
The crystal structures of several designed peptide hairpins have been determined in order to establish features of molecular conformations and modes of aggregation in the crystals. Hairpin formation has been induced using a centrally positioned (D)Pro-Xxx segment (Xxx = (L)Pro, Aib, Ac(6)c, Ala; Aib = alpha-aminoisobutyric acid; Ac(6)c = 1-aminocyclohexane-1-carboxylic acid). Structures of the peptides Boc-Leu-Phe-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (1), Boc-Leu-Tyr-Val-(D)Pro-(L)Pro-Leu-Phe-Val-OMe (2, polymorphic forms labeled as 2a and 2b), Boc-Leu-Val-Val-(D)Pro-(L)Pro-Leu-Val-Val-OMe (3), Boc-Leu-Phe-Val-(D)Pro-Aib-Leu-Phe-Val-OMe (4, polymorphic forms labeled as 4a and 4b), Boc-Leu-Phe-Val-(D)Pro-Ac(6)c-Leu-Phe-Val-OMe (5) and Boc-Leu-Phe-Val-(D)Pro-Ala-Leu-Phe-Val-OMe (6) are described. All the octapeptides adopt type II' beta-turn nucleated hairpins, stabilized by three or four cross-strand intramolecular hydrogen bonds. The angle of twist between the two antiparallel strands lies in the range of -9.8 degrees to -26.7 degrees. A detailed analysis of packing motifs in peptide hairpin crystals is presented, revealing three broad modes of association: parallel packing, antiparallel packing and orthogonal packing. An attempt to correlate aggregation modes in solution with observed packing motifs in crystals has been made by indexing of crystal faces in the case of three of the peptide hairpins. The observed modes of hairpin aggregation may be of relevance in modeling multiple modes of association, which may provide insights into the structure of insoluble polypeptide aggregates.
Resumo:
In all domains of life, initiator tRNA functions exclusively at the first step of protein synthesis while elongator tRNAs extend the polypeptide chain. Unique features of initiator tRNA enable it to preferentially bind the ribosomal P site and initiate translation. Recently, we showed that the abundance of initiator tRNA also contributes to its specialized role. This motivates the question, can a cell also use elongator tRNA to initiate translation under certain conditions? To address this, we introduced non-AUG initiation codons CCC (Pro), GAG (Glu), GGU (Gly), UCU (Ser), UGU (Cys), ACG (Thr), AAU (Asn), and AGA (Arg) into the uracil DNA glycosylase gene (ung) used as a reporter gene. Enzyme assays from log-phase cells revealed initiation from non-AUG codons when intracellular initiator tRNA levels were reduced. The activity increased significantly in stationary phase. Further increases in initiation from non-AUG codons occurred in both growth phases upon introduction of plasmid-borne genes of cognate elongator tRNAs. Since purine-rich Shine-Dalgarno sequences occur frequently on mRNAs (in places other than the canonical AUG codon initiation contexts), initiation with elongator tRNAs from the alternate contexts may generate proteome diversity under stress without compromising genomic integrity. Thus, by changing the relative amounts of initiator and elongator tRNAs within the cell, we have blurred the distinction between the two classes of tRNAs thought to be frozen through years of evolution.
Resumo:
Trypanosoma evansi is the most extensively distributed trypanosome responsible for disease called surra in livestock in many countries including frequent outbreaks in India. The prevalence of this disease is most commonly reported by standard parasitological detection methods (SPDM); however, antibody ELISA is being in practice by locally produced whole cell lysate (WCL) antigens in many countries. In the present investigation, we attempted to identify and purify immuno dominant, infection specific trypanosome antigens from T. evansi proteome using experimentally infected equine serum by immuno blot. Three immuno dominant clusters of proteins i.e. 62-66 kDa, 52-55 kDa and 41-43 kDa were identified based on their consistent reactivity with donkey sequential serum experimentally infected T. evansi up to 280 days post infection (dpi). The protein cluster of 62-66 kDa was purified in bulk in native form and comparatively evaluated with whole cell lysate antigen (WCL). ELISA and immuno blot showed that polypeptide of this cluster is 100% sensitive in detection of early and chronic infection. Further, this protein cluster was also found immuno reactive against hyper immune serum raised against predominantly 66 kDa exo antigen, revealed that this is a common immunodominant moieties in proteome and secretome of T. evansi.
Resumo:
Unconstrained gamma(4) amino acid residues derived by homologation of proteinogenic amino acids facilitate helical folding in hybrid (alpha gamma)(n) sequences. The C-12 helical conformation for the decapeptide, Boc-Leu-gamma(4)(R)Val](5)-OMe, is established in crystals by X-ray diffraction. A regular C-12 helix is demonstrated by NMR studies of the 18 residue peptide, Boc-Leu-gamma(4)(AR)Val](9)-OMe, and a designed 16 residue (alpha gamma)(n) peptide, incorporating variable side chains. Unconstrained (alpha gamma)(n) peptides show an unexpectedly high propensity for helical folding in long polypeptide sequences.
Resumo:
A novel peptide containing a single disulfide bond, CIWPWC (Vi804), has been isolated and characterised from the venom of the marine cone snail, Conus virgo. A precursor polypeptide sequence derived from complementary DNA, corresponding to the M-superfamily conotoxins, has been identified. The identity of the synthetic and natural peptide sequence has been established. A detailed analysis of the conformation in solution is reported for Vi804 and a synthetic analogue, (CIWPWC)-W-D ((D)W3-Vi804), in order to establish the structure of the novel WPW motif, which occurs in the context of a 20-membered macrocyclic disulfide. Vi804 exists exclusively in the cis W3P4 conformer in water and methanol, whereas (D)W3-Vi804 occurs exclusively as the trans conformer. NMR spectra revealed a W3P4 typeVI turn in Vi804 and a typeII turn in the analogue peptide, (D)W3-Vi804. The extremely high-field chemical shifts of the proline ring protons, together with specific nuclear Overhauser effects, are used to establish a conformation in which the proline ring is sandwiched between the flanking Trp residues, which emphasises a stabilising role for the aromatic-proline interactions, mediated predominantly by dispersion forces.
Resumo:
A regular secondary structure is described by a well defined set of values for the backbone dihedral angles (phi,psi and omega) in a polypeptide chain. However in real protein structures small local variations give rise to distortions from the ideal structures, which can lead to considerable variation in higher order organization. Protein structure analysis and accurate assignment of various structural elements, especially their terminii, are important first step in protein structure prediction and design. Various algorithms are available for assigning secondary structure elements in proteins but some lacunae still exist. In this study, results of a recently developed in-house program ASSP have been compared with those from STRIDE, in identification of alpha-helical regions in both globular and membrane proteins. It is found that, while a combination of hydrogen bond patterns and backbone torsional angles (phi-psi) are generally used to define secondary structure elements, the geometry of the C-alpha atom trace by itself is sufficient to define the parameters of helical structures in proteins. It is also possible to differentiate the various helical structures by their C-alpha trace and identify the deviations occurring both at mid-positions as well as at the terminii of alpha-helices, which often lead to occurrence of 3(10) and pi-helical fragments in both globular and membrane proteins.
Resumo:
Folding into compact globular structures, with well-defined modules of secondary structure, appears to be a characteristic of long polypeptide chains, with a specific patterning of coded amino acid residues along the length of sequence. Cooperative hydrogen bond driven secondary structure formation and solvent forces, which contribute favorably to the entropy of folding, by promoting compaction of the polymeric chain, have long been discussed as major determinants of the folding process. First principles design approaches, which use non-coded amino acids, employ an alternative structure directing strategy, by using amino acid residues which exhibit a strong conformational bias for specific regions of the Ramachandran map. This overview of ongoing studies in the authors' laboratory, attempts to explore the use of conformationally restricted amino acid residues in the design of peptides with well-defined secondary structures. Short peptides composed of 20 genetically coded amino acids usually exist in solution as an ensemble of equilibrating conformations. Apolar peptide sequences, which are readily soluble in organic solvents like chloroform and methanol, facilitate formation of structures which are predominately driven by intramolecular hydrogen bond formation. The choice of sequences containing residues with a limited range of conformational choices strongly favors formation of local turn structures, stabilized by short range intramolecular hydrogen bonds. Two residue beta-turns can nucleate either helical or hairpin folding, depending on the precise conformation of the turn segment Restriction of the conformational space available to amino acid residues is easily achieved by introduction of an additional alkyl group at the C alpha carbon atom or by side chain backbone cyclization, as in proline. Studies of synthetic sequences incorporating two prototype residues alpha-aminoisobutyric acid (Aib) and D-proline (DPro) illustrate the utility of the strategy in construction of helices and hairpins. Extensions to the design of conformationally switchable sequences and structurally defined hybrid peptides containing backbone homologated residues are also surveyed.
Resumo:
Enzymes utilizing pyridoxal 5'-phosphate dependent mechanism for catalysis are observed in all cellular forms of living organisms. PLP-dependent enzymes catalyze a wide variety of reactions involving amino acid substrates and their analogs. Structurally, these ubiquitous enzymes have been classified into four major fold types. We have carried out investigations on the structure and function of fold type I enzymes serine hydroxymethyl transferase and acetylornithine amino transferase, fold type n enzymes catabolic threonine deaminase, D-serine deaminase, D-cysteine desulfhydrase and diaminopropionate ammonia lyase. This review summarizes the major findings of investigations on fold type II enzymes in the context of similar studies on other PLP-dependent enzymes. Fold type II enzymes participate in pathways of both degradation and synthesis of amino acids. Polypeptide folds of these enzymes, features of their active sites, nature of interactions between the cofactor and the polypeptide, oligomeric structure, catalytic activities with various ligands, origin of specificity and plausible regulation of activity are briefly described. Analysis of the available crystal structures of fold type II enzymes revealed five different classes. The dimeric interfaces found in these enzymes vary across the classes and probably have functional significance.
Resumo:
Inaccuracies in prediction of circulating viral strain genotypes and the possibility of novel reassortants causing a pandemic outbreak necessitate the development of an anti-influenza vaccine with increased breadth of protection and potential for rapid production and deployment. The hemagglutinin (HA) stem is a promising target for universal influenza vaccine as stem-specific antibodies have the potential to be broadly cross-reactive towards different HA subtypes. Here, we report the design of a bacterially expressed polypeptide that mimics a H5 HA stem by protein minimization to focus the antibody response towards the HA stem. The HA mini-stem folds as a trimer mimicking the HA prefusion conformation. It is resistant to thermal/chemical stress, and it binds to conformation-specific, HA stem-directed broadly neutralizing antibodies with high affinity. Mice vaccinated with the group 1 HA mini-stems are protected from morbidity and mortality against lethal challenge by both group 1 (H5 and H1) and group 2 (H3) influenza viruses, the first report of cross-group protection. Passive transfer of immune serum demonstrates the protection is mediated by stem-specific antibodies. Furthermore, antibodies indudced by these HA stems have broad HA reactivity, yet they do not have antibody-dependent enhancement activity.