111 resultados para Upper Bounds
Resumo:
We use the recently measured accurate BaBaR data on the modulus of the pion electromagnetic form factor,Fπ(t), up to an energy of 3 GeV, the I=1P-wave phase of the π π scattering ampli-tude up to the ω−π threshold, the pion charge radius known from Chiral Perturbation Theory,and the recently measured JLAB value of Fπ in the spacelike region at t=−2.45GeV2 as inputs in a formalism that leads to bounds on Fπ in the intermediate spacelike region. We compare our constraints with experimental data and with perturbative QCD along with the results of several theoretical models for the non-perturbative contribution s proposed in the literature.
Resumo:
Salinity in the Bay of Bengal is highly heterogeneous, with extremely fresh waters found at the surface in the Northern part of the basin, and saltier waters at subsurface as well as to the south. This paper investigates the seasonal structure of sea surface salinity of the Bay in a regional high-resolution model forced by ERA-Interim reanalysis and various precipitation products. Surface circulation is believed to drive the spreading of northern Bay of Bengal fresh waters to the rest of the Indian Ocean. We first present a series of experiments to infer the sensitivity of modeled circulation to various numerical choices. Surface circulation is found to be sensitive to the horizontal resolution of the model, with the 1/12 degrees version appearing much more realistic than the 1/4 degrees version. The sidewall boundary condition is also drastically influencing the characteristics of the western boundary current simulated. We then investigate the sensitivity of the salinity response to the various precipitation products. We observe that ERA-Interim excess precipitation induces a fresh bias in the surface salinity response. Spaceborne precipitation products are more satisfactory. We then identify the pathways of the northern Bay freshwater mass, based on passive tracers experiments. Our model suggests that over timescales of a few months, vertical exchanges between the upper fresh layer and the underlying saltier layer appear to be the main export pathway for the freshwater. The horizontal circulation within the mixed layer also acts to convey fresh waters out of the Bay at these timescales, but in a lesser quantity compared to the vertical export. Beyond its intrinsic interest for the understanding of Bay of Bengal physics, this study highlights the need for a careful design of any realistic numerical model, in three key aspects: the choice of the resolution of the model, the choice of the sub-grid scale parameterizations, and the choice of the forcing fluxes. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The horizontal pullout capacity of vertical anchors embedded in sand has been determined by using an upper bound theorem of the limit analysis in combination with finite elements. The numerical results are presented in nondimensional form to determine the pullout resistance for various combinations of embedment ratio of the anchor (H/B), internal friction angle (ϕ) of sand, and the anchor-soil interface friction angle (δ). The pullout resistance increases with increases in the values of embedment ratio, friction angle of sand and anchor-soil interface friction angle. As compared to earlier reported solutions in literature, the present solution provides a better upper bound on the ultimate collapse load.
Resumo:
This paper presents a simple technique for reducing the computational effort while solving any geotechnical stability problem by using the upper bound finite element limit analysis and linear optimization. In the proposed method, the problem domain is discretized into a number of different regions in which a particular order (number of sides) of the polygon is chosen to linearize the Mohr-Coulomb yield criterion. A greater order of the polygon needs to be selected only in that region wherein the rate of the plastic strains becomes higher. The computational effort required to solve the problem with this implementation reduces considerably. By using the proposed method, the bearing capacity has been computed for smooth and rough strip footings and the results are found to be quite satisfactory.
Resumo:
A numerical formulation has been proposed for solving an axisymmetric stability problem in geomechanics with upper bound limit analysis, finite elements, and linear optimization. The Drucker-Prager yield criterion is linearized by simulating a sphere with a circumscribed truncated icosahedron. The analysis considers only the velocities and plastic multiplier rates, not the stresses, as the basic unknowns. The formulation is simple to implement, and it has been employed for finding the collapse loads of a circular footing placed over the surface of a cohesive-frictional material. The formulation can be used to solve any general axisymmetric geomechanics stability problem.
Resumo:
The influence of the flow rule on the bearing capacity of strip foundations placed on sand was investigated using a new kinematic approach of upper-bound limit analysis. The method of stress characteristics was first used to find the mechanism of the failure and to compute the stress field by using the Mohr-Coulomb yield criterion. Once the failure mechanism had been established, the kinematics of the plastic deformation was established, based on the requirements of the upper-bound limit theorem. Both associated and nonassociated plastic flows were considered, and the bearing capacity was obtained by equating the rate of external plastic work to the rate of the internal energy dissipation for both smooth and rough base foundations. The results obtained from the analysis were compared with those available from the literature. (C) 2014 American Society of Civil Engineers.
Resumo:
Let P be a set of n points in R-d. A point x is said to be a centerpoint of P if x is contained in every convex object that contains more than dn/d+1 points of P. We call a point x a strong centerpoint for a family of objects C if x is an element of P is contained in every object C is an element of C that contains more than a constant fraction of points of P. A strong centerpoint does not exist even for halfspaces in R-2. We prove that a strong centerpoint exists for axis-parallel boxes in Rd and give exact bounds. We then extend this to small strong epsilon-nets in the plane. Let epsilon(S)(i) represent the smallest real number in 0, 1] such that there exists an epsilon(S)(i)-net of size i with respect to S. We prove upper and lower bounds for epsilon(S)(i) where S is the family of axis-parallel rectangles, halfspaces and disks. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Motivated by the discrepancies noted recently between the theoretical calculations of the electromagnetic omega pi form factor and certain experimental data, we investigate this form factor using analyticity and unitarity in a framework known as the method of unitarity bounds. We use a QCD correlator computed on the spacelike axis by operator product expansion and perturbative QCD as input, and exploit unitarity and the positivity of its spectral function, including the two-pion contribution that can be reliably calculated using high-precision data on the pion form factor. From this information, we derive upper and lower bounds on the modulus of the omega pi form factor in the elastic region. The results provide a significant check on those obtained with standard dispersion relations, confirming the existence of a disagreement with experimental data in the region around 0.6 GeV.
Resumo:
Models of river flow time series are essential in efficient management of a river basin. It helps policy makers in developing efficient water utilization strategies to maximize the utility of scarce water resource. Time series analysis has been used extensively for modeling river flow data. The use of machine learning techniques such as support-vector regression and neural network models is gaining increasing popularity. In this paper we compare the performance of these techniques by applying it to a long-term time-series data of the inflows into the Krishnaraja Sagar reservoir (KRS) from three tributaries of the river Cauvery. In this study flow data over a period of 30 years from three different observation points established in upper Cauvery river sub-basin is analyzed to estimate their contribution to KRS. Specifically, ANN model uses a multi-layer feed forward network trained with a back-propagation algorithm and support vector regression with epsilon intensive-loss function is used. Auto-regressive moving average models are also applied to the same data. The performance of different techniques is compared using performance metrics such as root mean squared error (RMSE), correlation, normalized root mean squared error (NRMSE) and Nash-Sutcliffe Efficiency (NSE).
Resumo:
An axis-parallel b-dimensional box is a Cartesian product R-1 x R-2 x ... x R-b where R-i is a closed interval of the form a(i),b(i)] on the real line. For a graph G, its boxicity box(G) is the minimum dimension b, such that G is representable as the intersection graph of boxes in b-dimensional space. Although boxicity was introduced in 1969 and studied extensively, there are no significant results on lower bounds for boxicity. In this paper, we develop two general methods for deriving lower bounds. Applying these methods we give several results, some of which are listed below: 1. The boxicity of a graph on n vertices with no universal vertices and minimum degree delta is at least n/2(n-delta-1). 2. Consider the g(n,p) model of random graphs. Let p <= 1 - 40logn/n(2.) Then with high `` probability, box(G) = Omega(np(1 - p)). On setting p = 1/2 we immediately infer that almost all graphs have boxicity Omega(n). Another consequence of this result is as follows: For any positive constant c < 1, almost all graphs on n vertices and m <= c((n)(2)) edges have boxicity Omega(m/n). 3. Let G be a connected k-regular graph on n vertices. Let lambda be the second largest eigenvalue in absolute value of the adjacency matrix of G. Then, the boxicity of G is a least (kappa(2)/lambda(2)/log(1+kappa(2)/lambda(2))) (n-kappa-1/2n). 4. For any positive constant c 1, almost all balanced bipartite graphs on 2n vertices and m <= cn(2) edges have boxicity Omega(m/n).
Resumo:
The nonlinear response of a spherical shallow water model to an imposed heat source in the presence of realistic zonal mean zonal winds is investigated numerically. The solutions exhibit elongated, meridionally tilted ridges and troughs indicative of a poleward dispersion of wave activity. As the speed of the jets is increased, the equatorial Kelvin wave is unaffected but the global Rossby wave train coalesces to form a compact, amplified quadrupole structure that bears a striking resemblance to the observed upper level structure of the Madden-Julian oscillation. In the presence of strong subtropical westerly jets, the advection of planetary vorticity by the meridional flow and relative vorticity by the zonally averaged background flow conspire to create the distinctive quadrupole configuration of flanking Rossby waves.
Resumo:
We consider Ricci flow invariant cones C in the space of curvature operators lying between the cones ``nonnegative Ricci curvature'' and ``nonnegative curvature operator''. Assuming some mild control on the scalar curvature of the Ricci flow, we show that if a solution to the Ricci flow has its curvature operator which satisfies R + epsilon I is an element of C at the initial time, then it satisfies R + epsilon I is an element of C on some time interval depending only on the scalar curvature control. This allows us to link Gromov-Hausdorff convergence and Ricci flow convergence when the limit is smooth and R + I is an element of C along the sequence of initial conditions. Another application is a stability result for manifolds whose curvature operator is almost in C. Finally, we study the case where C is contained in the cone of operators whose sectional curvature is nonnegative. This allows us to weaken the assumptions of the previously mentioned applications. In particular, we construct a Ricci flow for a class of (not too) singular Alexandrov spaces.
Resumo:
This paper derives outer bounds for the 2-user symmetric linear deterministic interference channel (SLDIC) with limited-rate transmitter cooperation and perfect secrecy constraints at the receivers. Five outer bounds are derived, under different assumptions of providing side information to receivers and partitioning the encoded message/output depending on the relative strength of the signal and the interference. The usefulness of these outer bounds is shown by comparing the bounds with the inner bound on the achievable secrecy rate derived by the authors in a previous work. Also, the outer bounds help to establish that sharing random bits through the cooperative link can achieve the optimal rate in the very high interference regime.
Resumo:
This paper derives outer bounds on the sum rate of the K-user MIMO Gaussian interference channel (GIC). Three outer bounds are derived, under different assumptions of cooperation and providing side information to receivers. The novelty in the derivation lies in the careful selection of side information, which results in the cancellation of the negative differential entropy terms containing signal components, leading to a tractable outer bound. The overall outer bound is obtained by taking the minimum of the three outer bounds. The derived bounds are simplified for the MIMO Gaussian symmetric IC to obtain outer bounds on the generalized degrees of freedom (GDOF). The relative performance of the bounds yields insight into the performance limits of multiuser MIMO GICs and the relative merits of different schemes for interference management. These insights are confirmed by establishing the optimality of the bounds in specific cases using an inner bound on the GDOF derived by the authors in a previous work. It is also shown that many of the existing results on the GDOF of the GIC can be obtained as special cases of the bounds, e. g., by setting K = 2 or the number of antennas at each user to 1.
Resumo:
We consider information theoretic secret key (SK) agreement and secure function computation by multiple parties observing correlated data, with access to an interactive public communication channel. Our main result is an upper bound on the SK length, which is derived using a reduction of binary hypothesis testing to multiparty SK agreement. Building on this basic result, we derive new converses for multiparty SK agreement. Furthermore, we derive converse results for the oblivious transfer problem and the bit commitment problem by relating them to SK agreement. Finally, we derive a necessary condition for the feasibility of secure computation by trusted parties that seek to compute a function of their collective data, using an interactive public communication that by itself does not give away the value of the function. In many cases, we strengthen and improve upon previously known converse bounds. Our results are single-shot and use only the given joint distribution of the correlated observations. For the case when the correlated observations consist of independent and identically distributed (in time) sequences, we derive strong versions of previously known converses.