197 resultados para Uniform Recurrence Equations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The shock manifold equation is a first order nonlinear partial differential equation, which describes the kinematics of a shockfront in an ideal gas with constant specific heats. However, it was found that there was more than one of these shock manifold equations, and the shock surface could be embedded in a one parameter family of surfaces, obtained as a solution of any of these shock manifold equations. Associated with each shock manifold equation is a set of characteristic curves called lsquoshock raysrsquo. This paper investigates the nature of various associated shock ray equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three-dimensional (3-D) kinematical conservation laws (KCL) are equations of evolution of a propagating surface Omega(t) in three space dimensions. We start with a brief review of the 3-D KCL system and mention some of its properties relevant to this paper. The 3-D KCL, a system of six conservation laws, is an underdetermined system to which we add an energy transport equation for a small amplitude 3-D nonlinear wavefront propagating in a polytropic gas in a uniform state and at rest. We call the enlarged system of 3-D KCL with the energy transport equation equations of weakly nonlinear ray theory (WNLRT). We highlight some interesting properties of the eigenstructure of the equations of WNLRT, but the main aim of this paper is to test the numerical efficacy of this system of seven conservation laws. We take several initial shapes for a nonlinear wavefront with a suitable amplitude distribution on it and let it evolve according to the 3-D WNLRT. The 3-D WNLRT is a weakly hyperbolic 7 x 7 system that is highly nonlinear. Here we use the staggered Lax-Friedrichs and Nessyahu-Tadmor central schemes and have obtained some very interesting shapes of the wavefronts. We find the 3-D KCL to be suitable for solving many complex problems for which there presently seems to be no other method capable of giving such physically realistic features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly uniform, stable nanobimetallic dispersions are prepared in a single si ep in the form of sols, gels, and monoliths, using organically modified silicates as the matrix and the stabilizer. The Pt-Pd bimetallic dispersions are characterized by W-vis, TEM, SEM, and XRD measurements. The evolution of silicate was followed by IR spectroscopy. XPS and CO adsorption studies reveal that the structure of the particles consists of a palladium core and a platinum shell. Electrocatalysis of ascorbic acid oxidation has been demonstrated using thin films of silicate containing the nanobimetal particles on a glassy carbon electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We offer a technique, motivated by feedback control and specifically sliding mode control, for the simulation of differential-algebraic equations (DAEs) that describe common engineering systems such as constrained multibody mechanical structures and electric networks. Our algorithm exploits the basic results from sliding mode control theory to establish a simulation environment that then requires only the most primitive of numerical solvers. We circumvent the most important requisite for the conventionalsimulation of DAEs: the calculation of a set of consistent initial conditions. Our algorithm, which relies on the enforcement and occurrence of sliding mode, will ensure that the algebraic equation is satisfied by the dynamic system even for inconsistent initial conditions and for all time thereafter. [DOI:10.1115/1.4001904]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It was proposed earlier [P. L. Sachdev, K. R. C. Nair, and V. G. Tikekar, J. Math. Phys. 27, 1506 (1986); P. L. Sachdev and K. R. C. Nair, ibid. 28, 977 (1987)] that the Euler–Painlevé equations  y(d2y/dη2)+a(dy/dη)2 +f(η)y(dy/dη)+g(η)y2+b(dy/dη) +c=0 represent generalized Burgers equations (GBE’s) in the same way as Painlevé equations represent the Korteweg–de Vries type of equations. The earlier studies were carried out in the context of GBE’s with damping and those with spherical and cylindrical symmetry. In the present paper, GBE’s with variable coefficients of viscosity and those with inhomogeneous terms are considered for their possible connection to Euler–Painlevé equations. It is found that the Euler–Painlevé equation, which represents the GBE ut+uβux=(δ/2)g(t)uxx, g(t)=(1+t)n, β>0, has solutions, which either decay or oscillate at η=±∞, only when −1equations in Paper II. Thus the parametric value β=βn seems to bifurcate the families of solutions, which remain bounded at η=±∞. Other GBE’s considered here are also found to be reducible to Euler–Painlevé equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified set of governing equations for gas-particle flows in nozzles is suggested to include the inertial forces acting on the particle phase. The problem of gas-particle flow through a nozzle is solved using a first order finite difference scheme. A suitable stability condition for the numerical scheme for gas-particle flows is defined. Results obtained from the present set of equations are compared with those of the previous set of equations. It is also found that present set of equations give results which are in good agreement with the experimental observation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we have discussed limits of the validity of Whitham's characteristic rule for finding successive positions of a shock in one space dimension. We start with an example for which the exact solution is known and show that the characteristic rule gives correct result only if the state behind the shock is uniform. Then we take the gas dynamic equations in two cases: one of a shock propagating through a stratified layer and other down a nonuniform tube and derive exact equations for the evolution of the shock amplitude along a shock path. These exact results are then compared with the results obtained by the characteristic rule. The characteristic rule not only incorrectly accounts for the deviation of the state behind the shock from a uniform state but also gives a coefficient in the equation which differ significantly from the exact coefficients for a wide range of values of the shock strength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and movinghorizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An algorithm that uses integer arithmetic is suggested. It transforms anm ×n matrix to a diagonal form (of the structure of Smith Normal Form). Then it computes a reflexive generalized inverse of the matrix exactly and hence solves a system of linear equations error-free.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mathematical model developed by Hansen and Rattray based on Pritchard's equations for a coastal-plain estuary has been analysed to study the circulation and salinity distributions in coastal inlets with constant width and depth. Numerical solutions of the basic equations have been obtained without placing any restriction on Rayleigh numbers. A noteworthy contribution of the present analysis is that solutions of equations have been obtained for higher Rayleigh numbers, which was not possible in the earlier model. It is found that the effect of higher Rayleigh numbers is to increase the vertical advection, making the salinities in the upper and lower layers more uniform with a distinct halocline near the mid-depths. Solutions are discussed for some special cases of practical interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we give a generalized predictor-corrector algorithm for solving ordinary differential equations with specified initial values. The method uses multiple correction steps which can be carried out in parallel with a prediction step. The proposed method gives a larger stability interval compared to the existing parallel predictor-corrector methods. A method has been suggested to implement the algorithm in multiple processor systems with efficient utilization of all the processors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Cole-Hopf transformation has been generalized to generate a large class of nonlinear parabolic and hyperbolic equations which are exactly linearizable. These include model equations of exchange processes and turbulence. The methods to solve the corresponding linear equations have also been indicated.La transformation de Cole et de Hopf a été généralisée en vue d'engendrer une classe d'équations nonlinéaires paraboliques et hyperboliques qui peuvent être rendues linéaires de façon exacte. Elles comprennent des équations modèles de procédés d'échange et de turbulence. Les méthodes pour résoudre les équations linéaires correspondantes ont également été indiquées.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A higher-order theory of laminated composites under in-plane loads is developed. The displacement field is expanded in terms of the thickness co-ordinate, satisfying the zero shear stress condition at the surfaces of the laminate. Using the principle of virtual displacement, the governing equations and boundary conditions are established. Numerical results for interlaminar stresses arising in the case of symmetric laminates under uniform extension have been obtained and are compared with similar results available in the literature.