97 resultados para Topological Index


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, a new reactive power loss index (RPLI) is proposed for identification of weak buses in the system. This index is further used for determining the optimal locations for placement of reactive compensation devices in the power system for additional voltage support. The new index is computed from the reactive power support and loss allocation algorithm using Y-bus method for the system under intact condition and as well as critical/severe network contingencies cases. Fuzzy logic approach is used to select the important and critical/severe line contingencies from the contingency list. The inherent characteristics of the reactive power in system operation is properly addressed while determining the reactive power loss allocation to load buses. The proposed index is tested on sample 10-bus equivalent system and 72-bus practical equivalent system of Indian southern region power grid. The validation of the weak buses identification from the proposed index with that from other existing methods in the literature is carried out to demonstrate the effectiveness of the proposed index. Simulation results show that the identification of weak buses in the system from the new RPLI is completely non-iterative, thus requires minimal computational efforts as compared with other existing methods in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using polydispersity index as an additional order parameter we investigate freezing/melting transition of Lennard-Jones polydisperse systems (with Gaussian polydispersity in size), especially to gain insight into the origin of the terminal polydispersity. The average inherent structure (IS) energy and root mean square displacement (RMSD) of the solid before melting both exhibit quite similar polydispersity dependence including a discontinuity at solid-liquid transition point. Lindemann ratio, obtained from RMSD, is found to be dependent on temperature. At a given number density, there exists a value of polydispersity index (delta (P)) above which no crystalline solid is stable. This transition value of polydispersity(termed as transition polydispersity, delta (P) ) is found to depend strongly on temperature, a feature missed in hard sphere model systems. Additionally, for a particular temperature when number density is increased, delta (P) shifts to higher values. This temperature and number density dependent value of delta (P) saturates surprisingly to a value which is found to be nearly the same for all temperatures, known as terminal polydispersity (delta (TP)). This value (delta (TP) similar to 0.11) is in excellent agreement with the experimental value of 0.12, but differs from hard sphere transition where this limiting value is only 0.048. Terminal polydispersity (delta (TP)) thus has a quasiuniversal character. Interestingly, the bifurcation diagram obtained from non-linear integral equation theories of freezing seems to provide an explanation of the existence of unique terminal polydispersity in polydisperse systems. Global bond orientational order parameter is calculated to obtain further insights into mechanism for melting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Index-flood related regional frequency analysis (RFA) procedures are in use by hydrologists to estimate design quantiles of hydrological extreme events at data sparse/ungauged locations in river basins. There is a dearth of attempts to establish which among those procedures is better for RFA in the L-moment framework. This paper evaluates the performance of the conventional index flood (CIF), the logarithmic index flood (LIF), and two variants of the population index flood (PIF) procedures in estimating flood quantiles for ungauged locations by Monte Carlo simulation experiments and a case study on watersheds in Indiana in the U.S. To evaluate the PIF procedure, L-moment formulations are developed for implementing the procedure in situations where the regional frequency distribution (RFD) is the generalized logistic (GLO), generalized Pareto (GPA), generalized normal (GNO) or Pearson type III (PE3), as those formulations are unavailable. Results indicate that one of the variants of the PIF procedure, which utilizes the regional information on the first two L-moments is more effective than the CIF and LIF procedures. The improvement in quantile estimation using the variant of PIF procedure as compared with the CIF procedure is significant when the RFD is a generalized extreme value, GLO, GNO, or PE3, and marginal when it is GPA. (C) 2015 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slow intrinsic fluctuations of resistance, also known as the flicker noise or 1/f-noise, in the surface transport of strong topological insulators (TIs) is a poorly understood phenomenon. Here, we have systematically explored the 1/f-noise in field-effect transistors (FET) of mechanically exfoliated Bi1.6Sb0.4Te2Se TI films when transport occurs predominantly via the surface states. We find that the slow kinetics of the charge disorder within the bulk of the TI induces mobility fluctuations at the surface, providing a new source of intrinsic 1/f-noise that is unique to bulk TI systems. At small channel thickness, the noise magnitude can be extremely small, corresponding to the phenomenological Hooge parameter gamma(H) as low as approximate to 10(-4), but it increases rapidly when channel thickness exceeds similar to 1 mu m. From the temperature (T)-dependence of noise, which displayed sharp peaks at characteristic values of T, we identified generation-recombination processes from interband transitions within the TI bulk as the dominant source of the mobility fluctuations in surface transport. Our experiment not only establishes an intrinsic microscopic origin of noise in TI surface channels, but also reveals a unique spectroscopic information on the impurity bands that can be useful in bulk TI systems in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Topological crystalline insulators (TCIs) are a new quantum state of matter in which linearly dispersed metallic surface states are protected by crystal mirror symmetry. Owing to its vanishingly small bulk band gap, a TCI like Pb0.6Sn0.4Te has poor thermoelectric properties. Breaking of crystal symmetry can widen the band gap of TCI. While breaking of mirror symmetry in a TCI has been mostly explored by various physical perturbation techniques, chemical doping, which may also alter the electronic structure of TCI by perturbing the local mirror symmetry, has not yet been explored. Herein, we demonstrate that Na doping in Pb0.6Sn0.4Te locally breaks the crystal symmetry and opens up a bulk electronic band gap, which is confirmed by direct electronic absorption spectroscopy and electronic structure calculations. Na doping in Pb0.6Sn0.4Te increases p-type carrier concentration and suppresses the bipolar conduction (by widening the band gap), which collectively gives rise to a promising zT of 1 at 856 K for Pb0.58Sn0.40Na0.02Te. Breaking of crystal symmetry by chemical doping widens the bulk band gap in TCI, which uncovers a route to improve TCI for thermoelectric applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

General propagation properties and universal curves are given for double clad single mode fibers with inner cladding index higher or lower than the outer cladding index, using the parameter: inner cladding/core radii ratio. Mode cut-off conditions are also examined for the cases. It is shown that dispersion properties largely differ from the single clad single mode fiber case, leading to large new possibilities for extension of single mode operation for large wavelength tange. Paper demonstrates that how substantially we can extend the single mode operation range by using the raised inner cladding fiber. Throughout we have applied our own computations technique to find out the eigenvalue for a given modes. Detail derivations with all trivial mathematics for eigenmode equation are derived for each case. Paper also demonstrates that there is not much use of using depressed inner cladding fiber. We have also concluded that using the large inner cladding/inner core radius we can significantly increase the single mode operation range for the large wavelength region. (C) 2015 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, a low pressure transition around P similar to 3 GPa exhibited by the A(2)B(3)-type 3D topological insulators is attributed to an electronic topological transition (ETT) for which there is no direct evidence either from theory or experiments. We address this phase transition and other transitions at higher pressure in bismuth selenide (Bi2Se3) using Raman spectroscopy at pressure up to 26.2 GPa. We see clear Raman signatures of an isostructural phase transition at P similar to 2.4 GPa followed by structural transitions at similar to 10 GPa and 16 GPa. First-principles calculations reveal anomalously sharp changes in the structural parameters like the internal angle of the rhombohedral unit cell with a minimum in the c/a ratio near P similar to 3 GPa. While our calculations reveal the associated anomalies in vibrational frequencies and electronic bandgap, the calculated Z(2) invariant and Dirac conical surface electronic structure remain unchanged, showing that there is no change in the electronic topology at the lowest pressure transition.