191 resultados para Thiopurine-Methyl-Transferase
Resumo:
Three-dimensional (3D) structure determination of proteins is benefitted by long-range distance constraints comprising the methyl groups, which constitute the hydrophobic core of proteins. However, in methyl groups (of Ala, Ile, Leu, Met, Thr and Val) there is a significant overlap of C-13 and H-1 chemical shifts. Such overlap can be resolved using the recently proposed (3,2)D HCCH-COSY, a G-matrix Fourier transform (GFT) NMR based experiment, which facilitates editing of methyl groups into distinct spectral regions by combining their C-13 chemical shifts with that of the neighboring, directly attached, C-13 nucleus. Using this principle, we present three GFT experiments: (a) (4,3)D NOESY-HCCH, (b) (4,3)D H-1-TOCSY-HCCH and (c) (4,3)D C-13-TOCSY-HCCH. These experiments provide unique 4D spectral information rapidly with high sensitivity and resolution for side-chain resonance assignments and NOE analysis of methyl groups. This is exemplified by (4,3)D NOESY-HCCH data acquired for 17.9 kDa non-deuterated cytosolic human J-protein co-chaperone, which provided crucial long-range distance constraints for its 3D structure determination.
Resumo:
The infrared spectra of N-methylthiourea (NMTU) and its N-deuterated and S-methylated species were measured. Assignment of the infrared and Raman spectra of NMTU has been accomplished by correlation with thiourea and by use of infrared band shifts on N-deuteration as well as S-methylation. Normal coordinate analysis was performed for all the fundamentals of NMTU and NMTU-d3, the assignments obtained from the force field calculations being discussed in relation to those in other related thioureas and thioamides. The potential barriers to the internal rotations for the �NH2, �CH3, and �CN groups were estimated from the force constants.
Resumo:
SHMT (serine hydoxymethyltransferase), a type I pyridoxal 5'-phosphate-dependent enzyme, catalyses the conversion of L-serine and THF (tetrahydrofolate) into glycine and 5,10 -methylene THE SHMT also catalyses several THF-independent side reactions such as cleavage of P-hydroxy amino acids, trans-amination, racemization and decarboxylation. In the present study, the residues Asn(341), Tyr(60) and Phe(351), which are likely to influence THF binding, were mutated to alanine, alanine and glycine respectively, to elucidate the role of these residues in THF-dependent and -independent reactions catalysed by SHMT. The N341A and Y60A bsSHMT (Bacillus stearothermophilus SHMT) mutants were inactive for the THF-dependent activity, while the mutations had no effect on THF-independent activity. However, mutation of Phe(351) to glycine did not have any effect oil either of the activities. The crystal structures of the glycine binary complexes of the mutants showed that N341A bsSHMT forms an external aldimine as in bsSHMT, whereas Y60A and F351G bsSHMTs exist as a Mixture of internal/external aldimine and gem-diamine forms. Crystal structures of all of the three Mutants obtained in the presence of L-allo-threonine were similar to the respective glycine binary complexes. The structure of the ternary complex of F351G bsSHMT with glycine and FTHF (5-formyl THF) showed that the monoglutamate side chain of FTHF is ordered in both the subunits of the asymmetric unit, unlike in the wild-type bsSHMT. The present studies demonstrate that the residues Asn(341) and Tyr(60) are pivotal for the binding of THF/FTHF, whereas Phe(351) is responsible for the asymmetric binding of FTHF in the two subunits of the dimer.
Resumo:
A new method of construction of carbon-carbon bond is described. Thus the dianions generated from the metal-ammonia reduction of substituted benzoic acids readily undergo Michael addition with methyl crotonate resulting in synthetically useful products having a quaternary carbon. Based on this strategy, new syntheses of (+/-)-methyl acorate (14b) and (+/-)-methyl epi-corate (15) are reported.
Resumo:
A new strategy for the total synthesis of methyl 8-methoxy-2,2-dimethyl-7-oxo-1,2,3,5,6,7-hexahydro-s-indacene-4-carboxylate 4, a key intermediate in the synthesis of illudalanes, is reported. The key step in this strategy is a new method of preparation of indanones from tetralones. Thus, the furfurylidene derivative of 6-methoxy-3,4-dihydronaphthalen-1-(2H)-one is oxidised to the dicarboxylic acid 9a which is cyclodehydrated to methyl 7-methoxy-1-oxoindan-4-carboxylate 10. Similar reactions on the tetrahydronaphthalenone 25, obtained from 6-methoxy-1,2,3,4-tetrahydronaphthalene-7-carbaldehyde 11 by sequential transformations including a regiospecific benzylic oxidation resulted in the hexahydro-s-indacenone 4, thus completing a formal synthesis of illudinine 1.
Resumo:
Vapor-liquid equilibrium data have been measured for the binary systems methyl ethyl ketone-p-xylene and chlorobenzene-p-xylene, at 685 mmHg pressure. The activity coefficients have been evaluated taking Into consideration the vapor-phase nonideallty. The f-x-y data have been subjected to a thermodynamic consistency test and the activity coefficients have been correlated by the Wilson equation.
Resumo:
This article deals with studies of the dilute solution properties of methyl methacrylate-acrylonitrile (MMA-AN) copolymer of 0.415 mole fraction (mf) of acrylonitrile composition. Mark—Houwink parameters for this copolymer have been evaluated in acetonitrile (MeCN), 2-butanone (MEK), dimethyl formamide (DMF), and γ-butyrolactone (γ-BL). The Mark-Houwink exponent a in all four solvents at all temperatures is larger than the corresponding values of the parent homopolymers. The solvent power is in the order of DMF < γ–BL < MEK < MeCN; [η] decreases with an increase in temperature, which is behavior characteristic of polymers in good solvent. The unperturbed dimensions (K0) values, obtained by the Stockmayer–Fixman method, are lower than those for the parent homopolymers and depend on solvent as well as temperature. The solute—solvent interaction parameter X1 values are close to 0.5; X1 is independent of temperature. The excess interaction parameter XABvalues are negative. The results for this copolymer system in regard to low second virial coefficient A2, large X1, and high a values suggest that the large extension of these copolymer chains is due to the unusual short-range interactions.