171 resultados para Thermodynamic consistency


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chemical potentials of CaO in the two-phase fields Fe2O3 + CaFe2O4 and CaFe2O4 + Ca2Fe2O5 of the pseudobinary system CaO - Fe2O3 have been measured in the temperature range from 975 to 1275 K, relative to pure CaO as the reference state, using solid state galvanic cells incorporating single-crystal CaF2 as the solid electrolyte. The cell was operated under pure oxygen at ambient pressure. The standard Gibbs energies of formation of calcium ferrites, CaFe2O4 and Ca2Fe2O5, were derived from the reversible emfs. The results can be summarized by the following equations:CaO + Fe2O3 --> CaFe2O4;Delta G degrees = - 37,480 + 1.16 T (+/- 250) J/mol 2 CaO + Fe2O3 --> Ca2Fe2O5;Delta G degrees = - 45, 280 - 13.51 T (+/- 275) J/mol These values are compared with thermodynamic data reported in the literature. The results of this study are in excellent agreement with heat capacity data, and in reasonable agreement with earlier measurements of enthalpy and Gibbs energy of formation, but suggest significant revision of enthalpies of formation of calcium ferrites given in current thermodynamic compilations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of the wide variety of projected applications of ultrapure nitrides in advanced technologies, there is interest in developing new cost-effective methods of synthesis. Explored in this study is the use of ammonia and hydrazine for the synthesis of nitrides from oxides, sulfides and chlorides. Even when the standard Gibbs energy change for the nitridation reactions involved are moderately positive, the reaction can be made to proceed by lowering the partial pressure of the product gas below its equilibrium value. Use of a metastable form of precursor in the nanometric size range is an alternative method to facilitate nitridation. Ellingham-Richardson-Jeffes diagrams are used for a panoramic presentation of the driving force for each set of reactions as a function of temperature. Oxides are the least promising precursors for nitride synthesis; sulfides offer a larger synthetic window for many useful nitrides such as BN, AlN, InN, VN, TiN, ThN and Si3N4. The standard Gibbs free energy changes for reactions involving chlorides with either ammonia or hydrazine are much more negative. Hydrazine is a more powerful nitriding agent than ammonia. The metastability of hydrazine requires that it be introduced into a reactor through a water-cooled lance. The use of volatile halides with ammonia or hydrazine offers the potential for synthesis of pure and doped nanocrystalline nitrides. Nitride thin films can also be prepared by suitable adaptations of the chloride route. (C) 2002 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies on the phase relations in the system Nd-Mn-O at 1223 K showed two stable ternary compounds, NdMnO3 and NdMn2O5. An isothermal section of the ternary phase diagram for the system Nd-Mn-O was constructed based on phase analysis of samples quenched after equilibration using XRPD and EDS. An advanced version of the solid-state cell incorporating a buffer electrode was used to determine the Gibbs energies of decomposition of NdMnO3 and NdMn2O5 in the temperature range from 925 to 1400 K. Pure oxygen gas at 0.1 MPa was used as the reference electrode, and yttria-stabilized zirconia as the solid electrolyte. The buffer electrode was designed to prevent polarization of the three-phase electrode and ensure accurate data. The measured oxygen potential corresponding to the reaction,2 Nd2O3 + 4 MnO + O-2 --> 4 NdMnO3 can be represented by the equation,Amu(o2) / J.mol(-1) (+/-580) = -523 960 + 170.96 (T/K)Similarly, for the formation of NdMn2O5 according to the reaction,3 NdMnO3 + Mn3O4 + O-2 --> 3 NdMn2O5 Amu(o2) / J.mol(-1) (+/-660) = - 269 390 + 181.74 (T/K) (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isothermal sections of the phase diagrams for the systems Ln-Pd-O (Ln = lanthanide element) at 1223 K indicate the presence of two inter-oxide compounds Ln(4)PdO(7) and Ln(2)Pd(2)O(5) for Ln = La, Pr, Nd, Sm, three compounds Ln(4)PdO(7), Ln(2)PdO(4) and Ln(2)Pd(2)O(5) for Ln = Eu, Gd and only one compound of Ln(2)Pd(2)O(5) for Ln = Tb to Ho. The lattice parameters of the compounds Ln(4)PdO(7), Ln(2)PdO(4) and Ln(2)Pd(2)O(5) show systematic nonlinear variation with atomic number. The unit cell volumes decrease with increasing atomic number. The standard Gibbs energies, enthalpies and entropies of formation of the ternary oxides from their component binary oxides (Ln(2)O(3) and PdO) have been measured recently using an advanced version of the solid-state electrochemical cell. The Gibbs energies and enthalpies of formation become less negative with increasing atomic number of Ln. For all the three compounds, the variation in Gibbs energy and enthalpy of formation with atomic number is markedly non-linear. The decrease in stability with atomic number is most pronounced for Ln(2)Pd(2)O(5), followed by Ln(4)PdO(7) and Ln(2)PdO(4). This is probably related to the repulsion between Pd2+ ions on the opposite phases Of O-8 cubes in Ln(2)Pd(2)O(5), and the presence of Ln-filled O-8 cubes that share three faces with each other in Ln4PdO7. The values for entropy of formation of all the ternary oxides from their component binary oxides are relatively small. Although the entropies of formation show some scatter, the average value for Ln = La, Pr, Nd is more negative than the average value for the other lanthanide elements. From this difference, an average value for the structure transformation entropy of Ln(2)O(3) from C-type to A-type is estimated as 0.87 J.mol(-1).K-1. The standard Gibbs energies of formation of these ternary oxides from elements at 1223 K are presented as a function of lanthanide atomic number. By invoking the Neumann-Kopp rule for heat capacity, thermodynamic properties of the inter-oxide compounds at 298.15 K are estimated. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enthalpy increments and the standard molar Gibbs energies of formation-of DyFeO3(s) and Dy3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A co-operative phase transition, related to anti-ferromagnetic to paramagnetic transformation, is apparent. from the heat capacity data for DyFeO3 at similar to 648 K. A similar type of phase transition has been observed for Dy3Fe5O12 at similar to 560 K which is related to ferrimagnetic to paramagnetic transformation. Enthalpy increment data for DyFeO3(s) and Dy3Fe5O12(s), except in the vicinity of the second-order transition, can be represented by the following polynomial expressions:{H(0)m(T) - H(0)m(298.15 K)) (Jmol(-1)) (+/-1.1%) = -52754 + 142.9 x (T (K)) + 2.48 x 10(-3) x (T (K))(2) + 2.951 x 10(6) x (T (K))(-1); (298.15 less than or equal to T (K) less than or equal to 1000) for DyFeO3(s), and {H(0)m(T) - H(0)m(298.15 K)} (Jmol(-1)) (+/-1.2%) = -191048 + 545.0 x (T - (K)) + 2.0 x 10(-5) x (T (K))(2) + 8.513 x 10(6) x (T (K))(-1); (208.15 less than or equal to T (K) less than or equal to 1000)for Dy3Fe5O12(s). The reversible emfs of the solid-state electrochemical cells: (-)Pt/{DyFeO3(s) + Dy2O3(s) + Fe(s)}/YDT/CSZ//{Fe(s) + Fe0.95O(s)}/Pt(+) and (-)Pt/{Fe(s) + Fe0.95O(s)}//CSZ//{DyFeO3(s) + Dy3Fe5O12(s) + Fe3O4(s)}/Pt(+), were measured in the temperature range from 1021 to 1250 K and 1035 to 1250 K, respectively. The standard Gibbs energies of formation of solid DyFeO3 and Dy3Fe5O12 calculated by the least squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Dy2O3 from the literature, are given by Delta(f)G(0)m(DyFeO3,s)(kJmol(-1))(+/-3.2)= -1339.9 + 0.2473 x (T(K)); (1021 less than or equal to T (K) less than or equal to 1548)and D(f)G(0)m(Dy3Fe5O12,s) (kJmol(-1)) (+/-3.5) = -4850.4 + 0.9846 x (T (K)); (1035 less than or equal to T (K) less than or equal to 1250) The uncertainty estimates for Delta(f)G(0)m include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagram and chemical potential diagrams for the system Dy-Fe-O were developed at 1250 K. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple thermodynamic analysis of the well-known Michaelis-Menten equation (MME) of enzyme catalysis is proposed that employs the chemical potential mu to follow the Gibbs free energy changes attending the formation of the enzyme-substrate complex and its turnover to the product. The main conclusion from the above analysis is that low values of the Michaelis constant KM and high values of the turnover number k(cat) are advantageous: this supports a simple algebraic analysis of the MME, although at variance with current thinking. Available data apparently support the above findings. It is argued that transition state stabilisation - rather than substrate distortion or proximity - is the key to enzyme catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equilibrium concentrations of various condensed and gaseous phases have been thermodynamically calculated, using the free energy minimization criterion, for the metalorganic chemical vapour deposition (MOCVD) of copper films using bis(2,2,6,6-tetramethyl-3,5-heptadionato)copper(II) as the precursor material. From among the many chemical species that may possibly result from the CVD process, only those expected on the basis of mass spectrometric analysis and chemical reasoning to be present at equilibrium, under different CVD conditions, are used in the thermodynamic calculations. The study predicts the deposition of pure, carbon-free copper in the inert atmosphere of argon as well as in the reactive hydrogen atmosphere, over a wide range of substrate temperatures and total reactor pressures. Thin films of copper, grown on SiO2/Si(100) substrates from this metalorganic precursor by low pressure CVD have been characterized by XRD and AES. The experimentally determined composition of CVD-grown copper films is in reasonable agreement with that predicted by thermodynamic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enthalpy increments and the standard molar Gibbs energy of formation of NdFeO3(s) have been measured using a hightemperature Calvet microcalorimeter and a solid oxide galvanic cell, respectively. A lambda-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at similar to 687 K. Enthalpy increments, except in the vicinity of transition, can be represented by a polynomial expression: {Hdegrees(m)(T)-Hdegrees(m) (298.15 K)} /J(.)mol(-1) (+/- 0.7%)=-53625.6+146.0(T/K) +1.150 X 10(-4)(T/K)(2) +3.007 x 10(6)(T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000). The heat capacity, the first differential of {Hdegrees(m)(T)-Hdegrees(m)(298.15 K)}with respect to temperature, is given by Cdegrees(pm)/J(.)K(-1.)mol(-1)=146.0+ 2.30x10(-4) (T/K) - 3.007 X 10(6)(T/K)(-2). The reversible emf's of the cell, (-) Pt/{NdFeO3(s) +Nd2O3(s)+Fe(s)}//YDT/CSZ// Fe(s)+'FeO'(s)}/Pt(+), were measured in the temperature range from 1004 to 1208 K. It can be represented within experimental error by a linear equation: E/V=(0.1418 +/- 0.0003)-(3.890 +/- 0.023) x 10(-5)(T/K). The Gibbs energy of formation of solid NdFeO, calculated by the least-squares regression analysis of the data obtained in the present study, and data for Fe0.95O and Nd2O3 from the literature, is given by Delta(f)Gdegrees(m)(NdFeO3 s)/kJ (.) mol(-1)( +/- 2.0)=1345.9+0.2542(T/K); (1000 less than or equal to T/K less than or equal to 1650). The error in Delta(f)Gdegrees(m)(NdFeO3, s, T) includes the standard deviation in emf and the uncertainty in the data taken from the literature. Values of Delta(f)Hdegrees(m)(NdFeO3, s, 298.15 K) and Sdegrees(m) (NdFeO3 s, 298.15 K) calculated by the second law method are - 1362.5 (+/-6) kJ (.) mol(-1) and 123.9 (+/-2.5) J (.) K-1 (.) mol(-1), respectively. Based on the thermodynamic information, an oxygen potential diagram for the system Nd-Fe-O was developed at 1350 K. (C) 2002 Elsevier Science (USA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The enthalpy increments and the standard molar Gibbs energy (G) of formation of SmFeO3(S) and SM3Fe5O12(s) have been measured using a Calvet micro-calorimeter and a solid oxide galvanic cell, respectively. A X-type transition, related to magnetic order-disorder transformation (antiferromagnetic to paramagnetic), is apparent from the heat capacity data at similar to673 K for SmFeO3(s) and at similar to560 K for Sm3Fe5O12(S). Enthalpy increment data for SmFeO3(s) and SM3Fe5O12(s), except in the vicinity of X-transition, can be represented by the following polynomial expressions: {H-m(0)(T) - H-m(0)(298.15 K){/J mol-(1)(+/-1.2%) = -54 532.8 + 147.4 . (T/K) + 1.2 . 10(-4) . (T/K)(2) +3.154 . 10(6) . (T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000) for SmFeO3(s), and {H-m(0)(T) - H-m(0)(298.15 K)}/J mol(-1) (+/-1.4%) = -192 763 + 554.7 . (T/K) + 2.0 . 10(-6) . (T/K)(2) + 8.161 . 10(6) - (T/K)(-1); (298.15 less than or equal to T/K less than or equal to 1000) for Sm3Fe5O12(s). The reversible emf of the solid-state electrochemical cells, (-)Pt/{SmFeO3(s) + Sm2O3(S) + Fe(s)) // YDT / CSZ // {Fe(s) + Fe0.95O(s)} / Pt(+) and (-)Pt/{Fe(s) + Fe0.95O(S)} // CSZ // {SmFeO3(s) + Sm3Fe5O12(s) + Fe3O4(s) / Pt(+), were measured in the temperature ranges of 1005-1259 K and 1030-1252 K, respectively. The standard molar G of formation of solid SmFeO3 and Sm3Fe5O12 calculated by the least squares regression analysis of the data obtained in the current study, and data for Fe0.95O and Sm2O3 from the literature, are given by: Delta(f)G(m)(0)(SmFeO3, s)/kj . mol(-1)(+/-2.0) = -1355.2 + 0.2643 . ; (1005 less than or equal to T/K less than or equal to 1570) and Delta(f)G(m)(0)(Sm3Fe5O12, s)/kj . mol(-1) (+/- 3.1) = -4891.0 + 1.0312 . (T/K); (1030 less than or equal to T/K less than or equal to 1252) The uncertainty estimates for Delta(f)G(m)(0) include the standard deviation in the emf and uncertainty in the data taken from the literature. Based on these thermodynamic data, the oxygen potential diagram for the system Sm-Fe-O was constructed at 1250 K.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We find that at low temperature water, large amplitude (similar to 60 degrees) rotational jumps propagate like a string, with the length of propagation increasing with lowering temperature. The strings are formed by mobile 5-coordinated water molecules which move like a Glarum defect (J. Chem. Phys., 1960, 33, 1371), causing water molecules on the path to change from 4-coordinated to 5-coordinated and again back to 4-coordinated water, and in the process cause the tagged water molecule to jump, by following essentially the Laage-Hynes mechanism (Science, 2006, 311, 832-835). The effects on relaxation of the propagating defect causing large amplitude jumps are manifested most dramatically in the mean square displacement (MSD) and also in the rotational time correlation function of the O-H bond of the molecule that is visited by the defect (transient transition to the 5-coordinated state). The MSD and the decay of rotational time correlation function, both remain quenched in the absence of any visit by the defect, as postulated by Glarum long time ago. We establish a direct connection between these propagating events and the known thermodynamic and dynamic anomalies in supercooled water. These strings are found largely in the regions that surround the relatively rigid domains of 4-coordinated water molecules. The propagating strings give rise to a noticeable dynamical heterogeneity, quantified here by a sharp rise in the peak of the four-point density response function, chi(4)(t). This dynamics heterogeneity is also responsible for the breakdown of the Stokes-Einstein relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid water is known to exhibit remarkable thermodynamic and dynamic anomalies, ranging from solvation properties in supercritical state to an apparent divergence of the linear response functions at a low temperature. Anomalies in various dynamic properties of water have also been observed in the hydration layer of proteins, DNA grooves and inside the nanocavity, such as reverse micelles and nanotubes. Here we report studies on the molecular origin of these anomalies in supercooled water, in the grooves of DNA double helix and reverse micelles. The anomalies have been discussed in terms of growing correlation length and intermittent population fluctuation of 4- and 5-coordinated species. We establish correlation between thermodynamic response functions and mean squared species number fluctuation. Lifetime analysis of 4- and 5-coordinated species reveals interesting differences between the role of the two species in supercooled and constrained water. The nature and manifestations of the apparent and much discussed liquid-liquid transition under confinement are found to be markedly different from that in the bulk. We find an interesting `faster than bulk' relaxation in reverse micelles which we attribute to frustration effects created by competition between the correlations imposed by surface interactions and that imposed by hydrogen bond network of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity coefficients of oxygen in liquid lead-tin alloys have been measured between 550 and 1100°C by use of solid oxide galvanic cells Pt, Ni-NiO I Zr02 Solid electrolyte I 0 (Pb + Sn), Cermet, Pt Pt, Fe-FeO I Zr02 Solid electrolyte I O(Pb + Sn), Cermet, Pt Alcock and Richardson's quasi-chemical equation, with the coordination number of atoms set to 2, is found to predict successfully the activity coefficients of oxygen in these alloys.The relative partial molar enthalpy and entropy of oxygen ?t 1 atom per cent in the alloys have been calculated from ttva variation of the activity coefficient with temperature. The addition of tin to an unsaturated solution of oxygen in lead is shown to decrease significantly both the partial molar enthalpy and entropy of oxygen. As the measurements were restricted to a narrow range between 750-1100'C in lead-rich alloys, however, the pronounced variation of the partial molar enthalpy of oxygen with temperature at constant alloy composition predicted by the quasi-chemical model could not be verified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new composition path, Xi-Xj=constant, is suggested for the semi-empirical calculation of the thermodynamic properties of ternary ‘substitutional’ solutions from binary data, when the binary systems show deviations from the regular solution model. A comparison is made between the results obtained for integral and partial properties using this composition path and those calculated employing other composition paths suggested in literature. It appears that the best estimate of the ternary properties is obtained when binary data at compositions closest to the ternary composition are used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A review of the structural and thermodynamic information and phase equilibria in the Cu-Fe-O system suggested that a consistent, quantitative description of the system is hampered by lack of data on activities in the spinel solid solution CuFe2O4-Fe3O4. Therefore the activity of Fe3O4 in this solid solution is derived from measurements of the oxygen potentials established at 1000°C by mixtures containing Fe2O3 and spinel solid solutions of known composition. The oxygen pressures were measured manometrically for solid solutions rich in CuFe2O4, while for Fe3O4-rich compositions the oxygen potentials were obtained by an emf technique. The activities show significant negative deviations from Raoult’s law. The compositions of the spinel solid solutions in equilibrium with CuO + CuFeO2 and Cu + CuFeO2 were obtained from chemical analysis of the solid solution after magnetic separation. The oxygen potential of the three-phase mixture Cu + CuFeO2 + Fe3O4(spinel s.s.) was determined by a solid oxide galvanic cell. From these measurements a complete phase diagram and consistent thermodynamic data on the ternary condensed phases, CuFeO2 and CuFeO2O4, were obtained. An analysis of the free energy of mixing of the spinel solid solution furnished information on the distribution of cations and their valencies between the tetrahedral and octahedral sites of the spinel lattice, which is consistent with X-ray diffraction, magnetic and Seebeck coefficient measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vapor pressure of pure indium, and the sum of the pressures of (In) and (In2O) species over the condensed phase mixture {In} + 〈MgIn2O4〉 + 〈MgO〉, have been measured by the Knudsen effusion technique in the temperature range 1095–1350 K. The materials under study were contained in a zirconia crucible, which had a Knudsen orifice along the vertical wall. The major vapor species over the condensed phase mixture were identified as (In) and (In2O) using a mass-spectrometer. The vapor pressure of (In2O) corresponding to the reaction,View the MathML source was deduced from the experimental results;View the MathML source The standard free energy of formation of the inverse spinel 〈MgIn2O4〉 from its component oxides, is given by,View the MathML source View the MathML source The entropy of transformation of 〈In2O3〉 from the C rare-earth structure to the corundum structure is evaluated from the measured entropy of formation of (MgIn2O4) and a semi-empirical correlation for the entropy of formation of spinel phases from component oxides with rock-salt and corundum structures.