116 resultados para Temperature in machining
Resumo:
A novel non-metal catalyzed oxidation of organic azides to nitriles under solvent-free conditions is presented employing catalytic amounts of KI, and DABCO in aq. TBHP at room temperature. This nonmetal catalyzed oxidation of azides provides good selectivity as double and triple bonds were not oxidized under the present reaction conditions.
Resumo:
A chemoselective reduction of olefins and acetylenes is demonstrated by employing catalytic amounts of ferric chloride hexahydrate (FeCl3 center dot 6H(2)O) and aqueous hydrazine (NH2NH2 center dot H2O) as hydrogen source at room temperature. The reduction is chemoselective and tolerates a variety of reducible functional groups. Unlike other metal-catalysed reduction methods, the present method employs a minimum amount of aqueous hydrazine (1.5-2 equiv.). Also, the scope of this method is demonstrated in the synthesis of ibuprofen in aqueous medium.
Resumo:
This paper reports for the first time synthesis of free standing nano-crystalline copper crystals of a similar to 30-40 nm by ball milling of copper powder at 150 K under Argon atmosphere in a specially designed cryomill. The detailed characterization of these particles using multiple techniques that includes transmission electron microscopy confirms our conclusion. Careful analysis of the chemistry of these particles indicates that these particles are essentially contamination free. Through the analysis of existing models of grain size refinements during ball milling and low temperature deformation, we argue that the suppression of thermal processes and low temperature leads to formation of free nanoparticles as the process of fracture dominates over possible cold welding at low temperatures. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Over the last few decades, Metal Matrix Composites (MMCs) have emerged as a material system offering tremendous potential for future applications. The primary advantages offered by these materials are their improved mechanical properties, particularly in the areas of wear, strength and stiffness. Of the MMCs, Aluminum matrix composites have grown in prominence due to their low density, low melting point and low cost. However, machining these materials remains a challenging task mainly due to the high abrasiveness of the reinforcing phases. Conventional machining processes such as turning, milling or drilling are adopted for machining MMCs. In this article, the existing and ongoing developments in machining MMCs vis-a-vis tool life, tool wear, machinability and understanding chip formation mechanism have been highlighted. Most of the studies discussed in this review will focus on Aluminum matrix composites. Certain areas of machining studies which have hitherto not been investigated have also been detailed.
Resumo:
An experimental study for transient temperature response of low aspect ratio packed beds at high Reynolds numbers for a free stream with varying inlet temperature is presented. The packed bed is used as a compact heat exchanger along with a solid propellant gas-generator, to generate room temperature gases for use in applications such as control actuation and air bottle pressurization. Packed beds of lengths similar to 200 mm and 300 mm were characterized for packing diameter based Reynolds numbers, Re-d ranging from 0.6 x 10(4) to 8.5 x 10(4). The solid packing used in the bed consisted of circle divide 9.5 mm and circle divide 5 mm steel spheres with suitable arrangements to eliminate flow entrance and exit effects. The ratios of packed bed diameter to packing diameter for 9.5 mm and 5 mm sphere packing were similar to 9.5 and 18 respectively, with the average packed bed porosities around 0.4. Gas temperatures were measured at the entry, exit and at three axial locations along centre-line in the packed beds. The solid packing temperature was measured at three axial locations in the packed bed. An average Nusselt number correlation of the form Nu(d) = 3.91Re(d)(05) for Re-d range of 10(4) is proposed. For engineering applications of packed beds such as pebble bed heaters, thermal storage systems, and compact heat exchangers a simple procedure is suggested for calculating unsteady gas temperature at packed bed exit for packing Biot number Bi-d < 0.1. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
We report the low temperature electrical and magnetic properties of polypyrrole (PPy)/multiwall carbon nanotube (MWNT) coaxial composite fibrils synthesized by the electro-polymerization method. The iron-filled MWNTs were first grown by chemical vapor deposition of a mixture of liquid phase organic compound and ferrocene by the one step method. Then the PPy/MWNT fibrils were prepared by the electrochemical polymerization process. Electron microscopy studies reveal that PPy coating on the surface of nanotube is quite uniform throughout the length. The temperature dependent electrical resistivity and magnetization measurements were done from room temperature down to 5 and 10 K, respectively. The room temperature resistivity (rho) of PPy/MWNT composite fibril sample is similar to 3.8 Omega m with resistivity ratio R-5 K/R-300 K] of similar to 300, and the analysis of rho(T) in terms of reduced activation energy shows that resistivity lies in the insulating regime below 40 K. The resistivity varies according to three dimensional variable range hopping mechanism at low temperature. The magnetization versus applied field (M-H loop) data up to a field of 20 kOe are presented, displaying ferromagnetic behavior at all temperatures with enhanced coercivities similar to 680 and 1870 Oe at room temperature and 10 K, respectively. The observation of enhanced coercivity is due to significant dipolar interaction among encapsulated iron nanoparticles, and their shape anisotropy contribution as well.
Resumo:
The sensing of carbon dioxide (CO2) at room temperature, which has potential applications in environmental monitoring, healthcare, mining, biotechnology, food industry, etc., is a challenge for the scientific community due to the relative inertness of CO2. Here, we propose a novel gas sensor based on clad-etched Fiber Bragg Grating (FBG) with polyallylamine-amino-carbon nanotube coated on the surface of the core for detecting the concentrations of CO2 gas at room temperature, in ppm levels over a wide range (1000 ppm-4000 ppm). The limit of detection observed in polyallylamine-amino-carbon nanotube coated core-FBG has been found to be about 75 ppm. In this approach, when CO2 gas molecules interact with the polyallylamine-amino-carbon nanotube coated FBG, the effective refractive index of the fiber core changes, resulting in a shift in Bragg wavelength. The experimental data show a linear response of Bragg wavelength shift for increase in concentration of CO2 gas. Besides being reproducible and repeatable, the technique is fast, compact, and highly sensitive. (C) 2013 AIP Publishing LLC.
Resumo:
We report an environment friendly and green approach to obtain few-layer graphene by the almost instantaneous reduction of graphene oxide using Mg ribbons in acidic solution with a hydrogen spillover mechanism. The typical time is 1-5 min, which is much faster than the reduction by other metal catalysts.
Resumo:
Sub-solidus phase relations in the ternary systems CaO-RuO2-SiO2 and CaO-RuO2-V2O5 have been refined using thermodynamic data on calcium ruthenates, silicates and vanadates. Tie lines are established by considering Gibbs energy change for exchange reactions. Quaternary oxides have not been detected in these systems. Because of the relatively large entropy associated with phase transition of Ca2SiO4 from olivine to alpha' structure at 1120 K, reversal of one tie line is seen in the system CaO-RuO2-SiO2 between 950 and 1230 K. There is no change in sub-solidus phase relation as a function of temperature in the system CaO-RuO2-V2O5. Since vanadium can exist in several lower oxidation states, the computed sub-solidus phase relations are valid only at high oxygen partial pressures. There is fair agreement between the computed phase diagram and the limited experimental information available for CaO-deficient compositions in the literature. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
We report a new protocol for the synthesis of M@rGO (M = Au, Pt, Pd, Ag and rGO = reduced graphene oxide) hybrid nanostructures at room temperature in Zn-acid medium. The roles of Zn-acid are to reduce the GO by generated hydrogen and the deposition of metal nanoparticles on rGO by galvanic replacement reaction between Zn and Mn+.
Resumo:
We develop a strong-coupling (t << U) expansion technique for calculating the density profile for bosonic atoms trapped in an optical lattice with an overall harmonic trap at finite temperature and finite on-site interaction in the presence of superfluid regions. Our results match well with quantum Monte Carlo simulations at finite temperature. We also show that the superfluid order parameter never vanishes in the trap due to the proximity effect. Our calculations for the scaled density in the vacuum-to-superfluid transition agree well with the experimental data for appropriate temperatures. We present calculations for the entropy per particle as a function of temperature which can be used to calibrate the temperature in experiments. We also discuss issues connected with the demonstration of universal quantum critical scaling in the experiments.
Resumo:
A new methodology has been developed for synthesizing lanthanide trifluoride (LnF(3)) nanoparticles using a simple diffusion technique. The approach uses a lanthanide based hydrogel matrix to control the kinetics of the reaction, which also acts as a stabilizing platform, thus enabling the room temperature, in situ synthesis of finely sized (3-5 nm), monodisperse nanoparticles that were found to form in an ordered pattern on the gel fibers.
Resumo:
The effect of silver nanoparticles (nAg) in PS/PVME polystyrene/poly(vinyl methyl ether)] blends was studied with respect to the evolution of morphology, demixing temperature, and segmental dynamics. In the early stage of demixing, PVME developed an interconnected network that coarsened in the late stage. The nAg induced miscibility in the blends as supported by shear rheological measurements. The physicochemical processes that drive phase separation in blends also led to migration of nAg to the PVME phase as supported by AFM. The segmental dynamics was greatly influenced by the presence of nAg due to the specific interaction of nAg with PVME. Slower dynamics and an increase in intermolecular cooperativity in the presence of nAg further supported the role of nAg in delaying the phase separation processes and augmenting the demixing temperature in the blends. Different theoretical models were assessed to gain insight into the dynamic heterogeneity in PS/PVME blends at different length scales.
Resumo:
We report a detailed magnetic, dielectric and Raman studies on partially disordered and biphasic double perovskite La2NiMnO6. DC and AC magnetic susceptibility measurements show two magnetic anomalies at T-C1 similar to 270 K and T-C2 similar to 240 K, which may indicate the ferromagnetic ordering of the monoclinic and rhombohedral phases, respectively. A broad peak at a lower temperature (T-sg similar to 70 K) is also observed indicating a spin-glass transition due to partial anti-site disorder of Ni2+ and Mn4+ ions. Unlike the pure monoclinic phase, the biphasic compound exhibits a broad but a clear dielectric anomaly around 270 K which is a signature of magneto-dielectric effect. Temperature-dependent Raman studies between the temperature range 12-300 K in a wide spectral range from 220 cm(-1) to 1530 cm(-1) reveal a strong renormalization of the first as well as second-order Raman modes associated with the (Ni/Mn)O-6 octahedra near T-C1 implying a strong spin-phonon coupling. In addition, an anomaly is seen in the vicinity of spin-glass transition temperature in the temperature dependence of the frequency of the anti-symmetric stretching vibration of the octahedra. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The origin of a high Neel temperature in a 5d oxide, NaOsO3, has been analyzed within the mean-field limit of a multiband Hubbard model and compared with the analogous 4d oxide, SrTcO3. Our analysis shows that there are a lot of similarities in both of these oxides on the dependence of the effective exchange interaction strength (J(0)) on the electron-electron interaction strength ( U). However, the relevant value of U in each system puts them in different portions of the parameter space. Although the Neel temperature for NaOsO3 is less than that for SrTcO3, our results suggest that there could be examples among other 5d oxides that have a higher Neel temperature. We have also examined the stability of the G-type antiferromagnetic state found in NaOsO3 as a function of electron doping within GGA + U calculations and find a robust G-type antiferromagnetic metallic state stabilized. The most surprising aspect of the doped results is the rigid bandlike evolution of the electronic structure, which indicates that the magnetism in NaOsO3 is not driven by Fermi surface nesting.