94 resultados para THOMSON SCATTERING
Resumo:
Naturally formed CdTe/CdS core/shell quantum dot (QD) structures in the presence of surface stabilizing agents have been synthesized by a hydrothermal method. Size and temperature dependent photoluminescence (PL) spectra have been investigated to understand the exciton-phonon interaction, and radiative and nonradiative relaxation of carriers in these QDs. The PL of these aqueous CdTe QDs (3.0-4.8 nm) has been studied in the temperature range 15-300 K. The strength of the exciton-LO-phonon coupling, as reflected in the Huang-Rhys parameter `S' is found to increase from 1.13 to 1.51 with the QD size varying from 4.8 to 3.0 nm. The PL linewidth (FWHM) increases with increase in temperature and is found to have a maximum in the case of QDs of 3.0 nm in size, where the exciton-acoustic phonon coupling coefficient is enhanced to 51 mu eV K-1, compared to the bulk value of 0.72 mu eV K-1. To understand the nonradiative processes, which affect the relaxation of carriers, the integrated PL intensity is observed as a function of temperature. The integrated PL intensity remains constant until 50 K for relatively large QDs (3.9-4.8 nm) beyond which a thermally activated process takes over. Below 150 K, a small activation energy, 45-19 meV, is found to be responsible for the quenching of the PL. Above 150 K, the thermal escape from the dot assisted by scattering with multiple longitudinal optical (LO) phonons is the main mechanism for the fast quenching of the PL. Besides this high temperature quenching, interestingly for relatively smaller size QDs (3.4-3.0 nm), the PL intensity enhances as the temperature increases up to 90-130 K, which is attributed to the emission of carriers from interface/trap states having an activation energy in the range of 6-13 meV.
Resumo:
We study the variations in the Cyclotron Resonant Scattering Feature (CRSF) during 2011 outburst of the high mass X-ray binary 4U 0115+63 using observations performed with Suzaku, RXTE, Swift and INTEGRAL satellites. The wide-band spectral data with low-energy coverage allowed us to characterize the broad-band continuum and detect the CRSFs. We find that the broad-band continuum is adequately described by a combination of a low temperature (kT similar to 0.8 keV) blackbody and a power law with high energy cutoff (E-cut similar to 5.4 keV) without the need for a broad Gaussian at similar to 10 keV as used in some earlier studies. Though winds from the companion can affect the emission from the neutron star at low energies (<3 keV), the blackbody component shows a significant presence in our continuum model. We report evidence for the possible presence of two independent sets of CRSFs with fundamentals at similar to 11 and similar to 15 keV. These two sets of CRSFs could arise from spatially distinct emitting regions. We also find evidence for variations in the line equivalent widths, with the 11 keV CRSF weakening and the 15 keV line strengthening with decreasing luminosity. Finally, we propose that the reason for the earlier observed anticorrelation of line energy with luminosity could be due to modelling of these two independent line sets (similar to 11 and similar to 15 keV) as a single CRSF.
Resumo:
Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms.
Resumo:
Research studies on plasmonic properties of triangular-shaped silver nanoparticles might lead to several interesting applications. However, in this work, triangular-shaped silver nanoparticles have been synthesized by simple solvothermal technique and reported the effect of size on the electron-phonon scattering in the synthesized materials by analyzing their temperature-dependent photoluminescence (PL) emission characteristics. It has been observed that total integrated PL emission intensity is quenched by 33 % with the increase in temperature from 278 to 323 K. The observed decrease in PL emission intensity has been ascribed to the increase of electron-phonon scattering rate with the increase in temperature. The values of electron-phonon coupling strength (S) for synthesized samples have been evaluated by theoretical fitting of the experimentally obtained PL emission data. Smaller sized triangular nanoparticle has been found to exhibit stronger temperature dependence in PL emission, which strongly suggests that smaller sized triangular silver nanostructures have better electron-phonon coupling.