153 resultados para Synthetic images
Resumo:
A stereoselective strategy for the rapid acquisition of the complete framework (dideoxyottelione A) of the promising cytotoxic agent ottelione A, with four contiguous stereogenic centres on a hydrindane skeleton and a sensitive 4-methylenecyclohex-2-enone functionality, from the readily available Diels-Alder adduct of 1,2,3,4-tetrachloro-5,5-dimethoxycyclopentadiene and norbornadiene, is delineated.
Resumo:
A common synthetic approach to the recently reported sesquiterpene kelsoene 1 and the tetraterpene poduran 5, bearing a novel tricyclo[6.2.0.0(2,6)]decane framework, from commercially available 1,5-COD and leading to the first construction of the carbocyclic core present in these natural products is delineated.
Resumo:
Thanks to advances in sensor technology, today we have many applications (space-borne imaging, medical imaging, etc.) where images of large sizes are generated. Straightforward application of wavelet techniques for above images involves certain difficulties. Embedded coders such as EZW and SPIHT require that the wavelet transform of the full image be buffered for coding. Since the transform coefficients also require storing in high precision, buffering requirements for large images become prohibitively high. In this paper, we first devise a technique for embedded coding of large images using zero trees with reduced memory requirements. A 'strip buffer' capable of holding few lines of wavelet coefficients from all the subbands belonging to the same spatial location is employed. A pipeline architecure for a line implementation of above technique is then proposed. Further, an efficient algorithm to extract an encoded bitstream corresponding to a region of interest in the image has also been developed. Finally, the paper describes a strip based non-embedded coding which uses a single pass algorithm. This is to handle high-input data rates. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The title compound I (24-(S)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P2(1)2(1)2(1) with Z = 4. The unit cell dimensions are a = 6.701(2)Angstrom, b = 11.506(8)Angstrom, c = 32.183(4)Angstrom, V = 2481(2)Angstrom (3), D-cal = 1.077 Mg/m(3). The tide compound II (24-(R)-Hydroxy Coprastan-3-one) crystallises in orthorhombic space group P212121 with two molecules per assymetric unit and with Z = 8. The Unit cell dimensions are a = 10.954(2)Angstrom, b = 21.757(6)Angstrom, c = 21.130(7)Angstrom, V = 5035.0(2)Angstrom (3), D-cal = 1.062 Mg/m(3). In compound I and in both the molecules of compound II, the rings A, B & C are in chair conformation and the five membered ring D is in envelope conformation. The priority sequence attached to the chiral carbon C24 has "S" designation in compound I and "R" designation in compound II. The structures are stabilized by C-H . . .O and O-H---O hydrogen bonds.
Reconstructing Solid Model from 2D Scanned Images of Biological Organs for Finite Element Simulation
Resumo:
This work presents a methodology to reconstruct 3D biological organs from image sequences or other scan data using readily available free softwares with the final goal of using the organs (3D solids) for finite element analysis. The methodology deals with issues such as segmentation, conversion to polygonal surface meshes, and finally conversion of these meshes to 3D solids. The user is able to control the detail or the level of complexity of the solid constructed. The methodology is illustrated using 3D reconstruction of a porcine liver as an example. Finally, the reconstructed liver is imported into the commercial software ANSYS, and together with a cyst inside the liver, a nonlinear analysis performed. The results confirm that the methodology can be used for obtaining 3D geometry of biological organs. The results also demonstrate that the geometry obtained by following this methodology can be used for the nonlinear finite element analysis of organs. The methodology (or the procedure) would be of use in surgery planning and surgery simulation since both of these extensively use finite elements for numerical simulations and it is better if these simulations are carried out on patient specific organ geometries. Instead of following the present methodology, it would cost a lot to buy a commercial software which can reconstruct 3D biological organs from scanned image sequences.
Resumo:
Several novel oxides have been prepared by the decomposition of carbonate precursors of calcite structure of the general formulas Mn1−xMxCO3 (M = Mg,Co,Cd), Ca1−xMx'CO3, and Ca1−x−yMxMy”CO3.
Resumo:
We investigate the ground state of interacting spin-1/2 fermions in three dimensions at a finite density (rho similar to k(F)(3)) in the presence of a uniform non-Abelian gauge field. The gauge-field configuration (GFC) described by a vector lambda equivalent to (lambda(x),lambda(y),lambda(z)), whose magnitude lambda determines the gauge coupling strength, generates a generalized Rashba spin-orbit interaction. For a weak attractive interaction in the singlet channel described by a small negative scattering length (k(F)vertical bar a(s)vertical bar less than or similar to 1), the ground state in the absence of the gauge field (lambda = 0) is a BCS (Bardeen-Cooper-Schrieffer) superfluid with large overlapping pairs. With increasing gauge-coupling strength, a non-Abelian gauge field engenders a crossover of this BCS ground state to a BEC (Bose-Einstein condensate) of bosons even with a weak attractive interaction that fails to produce a two-body bound state in free vacuum (lambda = 0). For large gauge couplings (lambda/k(F) >> 1), the BEC attained is a condensate of bosons whose properties are solely determined by the Rashba gauge field (and not by the scattering length so long as it is nonzero)-we call these bosons ``rashbons.'' In the absence of interactions (a(s) = 0(-)), the shape of the Fermi surface of the system undergoes a topological transition at a critical gauge coupling lambda(T). For high-symmetry GFCs we show that the crossover from the BCS superfluid to the rashbon BEC occurs in the regime of lambda near lambda(T). In the context of cold atomic systems, these results make an interesting suggestion of obtaining BCS-BEC crossover through a route other than tuning the interaction between the fermions.
Resumo:
We explored the effect of a novel synthetic triterpenoid compound cyano enone of methyl boswellates (CEMB) on various prostate cancer and glioma cancer cell lines. CEMB displayed concentration-dependent cytotoxic activity with submicromolar lethal dose 50% (LD(50)) values in 10 of 10 tumor cell lines tested. CEMB-induced cytotoxicity is accompanied by activation of downstream effector caspases (caspases 3 and 7) and by upstream initiator caspases involved in both the extrinsic (caspase 8) and intrinsic (caspase 9) apoptotic pathways. By using short interfering RNAs (siRNA), we show evidence that knockdown of caspase 8, DR4, Apaf-1, and Bid impairs CEMB-induced cell death. Similar to other proapoptotic synthetic triterpenoid compounds, CEMB-induced apoptosis involved endoplasmic reticulum stress, as shown by partial rescue of tumor cells by siRNA-mediated knockdown of expression of genes involved in the unfolded protein response such as IRE1 alpha, PERK, and ATF6. Altogether, our results suggest that CEMB stimulates several apoptotic pathways in cancer cells, suggesting that this compound should be evaluated further as a potential agent for cancer therapy. Mol Cancer Ther; 10(9); 1635-43. (C)2011 AACR.