208 resultados para Structural dynamics.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A unified treatment of polarization relaxation, dielectric dispersion and solvation dynamics in a dense, dipolar liquid is presented. It is shown that the information of solvent polarization relaxation that is obtained by macroscopic dielectric dispersion experiments is not sufficient to understand dynamics of solvation of a newly created ion or dipole. In solvation, a significant contribution comes from intermediate wave vector processes which depend critically on the short range (nearest‐neighbor) spatial and orientational order that are present in a dense, dipolar liquid. An analytic expression is obtained for the time dependent solvation energy that depends, in addition to the translational and rotational diffusion coefficients of the liquid, on the ratio of solute–solvent molecular sizes and on the microscopic structure of the polar liquid. Mean spherical approximation (MSA) theory is used to obtain numerical results for polarization relaxation, for wave vector and frequency dependent dielectric function and for time dependent solvation energy. We find that in the absence of translational contribution, the solvation of an ion is, in general, nonexponential. In this case, the short time decay is dominated by the longitudinal relaxation time but the long time decay is dominated by much slower large wave vector processes involving nearest‐neighbor molecules. The presence of a significant translational contribution drastically alters the decay behavior. Now, the long‐time behavior is given by the longitudinal relaxation time constant and the short time dynamics is controlled by the large wave vector processes. Thus, although the continuum model itself is conceptually wrong, a continuum model like result is recovered in the presence of a sizeable translational contribution. The continuum model result is also recovered in the limit of large solute to solvent size ratio. In the opposite limit of small solute size, the decay is markedly nonexponential (if the translational contribution is not very large) and a complete breakdown of the continuum model takes place. The significance of these results is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report Extended X-ray Absorption Fine Structure and anelastic spectroscopy measurements on on hole doped manganese oxides La1-xCaxMnO3 which present the colossal magnetoresistance effect. EXAFS measurements were realized both in the absence and presence of an applied magnetic field of 1.1 Tesla, in a wide temperature range (between 330 and 77 K) and at various dopings (x = 0.25 and x = 0.33). The magnetic field orders the magnetic moments so favouring the electron mobility and the reduction of Mn-O octahedra distortions. We observe the presence of four short and two long Mn-O distances (1.93 and 2.05 Angstrom respectively) above and also below the metal-insulator phase transition. The overall distortion decreases but does not completely disappear in the metallic phase suggesting the possible coexistence of metallic and insulating regions at low temperatures. The magnetic field reduces the lattice distortions showing evidence of a microscopic counterpart of the macroscopic colossal magnetoresistance. We also present preliminary anelastic relaxation spectra in a wide temperature range from 900 K to 1 K on a sample with x = 0.40, in order to study the structural phase transitions and the lattice dynamics. A double peak has been observed at the metal-insulator transition in the imaginary part of Young's modulus. This double peak indicates that the metal-insulator transition could be a more complex phenomenon than a simple second order phase transition. In particular the peak at lower temperatures can be connected with the possible presence of inhomogeneous phase structures. Another intense dissipation peak has been observed corresponding to the structural orthorhombic-trigonal transition around 750 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The continuum model of dipolar solvation dynamics is reviewed. The effects of non-spherical molecular shapes, of non-Debye dielectric relaxation of the polar solvent and of dielectric inhomogeneity of the solvent around the solute dipole are investigated. Several new theoretical results are presented. It is found that our generalized continuum model, which takes into account the dielectric inhomogeneity of the surrounding solvent, provides a description of solvation dynamics consistent with recent experimental results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preferential cleavage of active genes by DNase I has been correlated with a structurally altered conformation of DNA at the hypersensitive site in chromatin. To have a better understanding of the structural requirements for gene activation as probed by DNase I action, digestability by DNase I of synthetic polynucleotides having the ability to adopt B and non-B conformation (like Z-form) was studied which indicated a marked higher digestability of the B-form of DNA. Left handed Z form present within a natural sequence in supercoiled plasmid also showed marked resistance towards DNase I digestion. We show that alternating purine-pyrimidine sequences adopting Z-conformation exhibit DNAse I foot printing even in a protein free system. The logical deductions from the results indicate that 1) altered structure like Z-DNA is not a favourable substrate for DNase I, 2) both the ends of the alternating purine-pyrimidine insert showed hypersensitivity, 3) B-form with a minor groove of 12-13 A is a more favourable substrate for DNase I than an altered structure, 4) any structure of DNA deviating largely from B form with a capacity to flip over to the B-form are potential targets for the DNase I enzymic probes in naked DNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theoretical expressions for the time-dependent solvation energy of an ion and of a dipole in a dense dipolar liquid are derived from microscopic considerations. We show that in contradiction to the prediction of the continuum models, the dynamics of these two species are significantly different from each other. Especially, the zero wavevector contribution, which is significant for ions, is totally absent for dipoles. Dipolar solvation may be profoundly influenced by the translational modes of the host solvent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A microscopic theoretical calculation of time-dependent solvation energy shows that the solvation of an ion or a dipole is dominated by a single relaxation time if the translational contribution to relaxation is significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparative study of the switching properties of pure and √-irradiated TGSe crystals has been carried out to see the effect of irradiation on the structure and dynamics of domains. The switching behaviour of √-irradiated TGSe has been found to be qualitatively similar to that of unirradiated crystal and this has been interpreted in terms of structural inhibition caused by the formation of radiolysis products as well as the difference between the domain structures of the unirradiated and irradiated samples. Confirmation of this has been obtained by studying the domain patterns using the etch method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The details of cage-to-cage migration have been obtained from an analysis of the molecular dynamics trajectory of a probe adsorbate. It is observed that particles utilize the region within a radius of 2 angstrom from the window center but with diffusion taking place predominantly at 1.6 angstrom from the window center and a potential energy of nearly -12 kJ/mol. A barrier of about 0.5 kJ/mol is observed for surface-mediated diffusion. Surprisingly, for diffusion without surface mediation for a particle going from one cage center to another, there is an attractive well near the window instead of a barrier. At low adsorbate concentrations and room temperature, the predominant mode for cage-to-cage migration is surface-mediated diffusion. The analysis suggests that particles slide along the surface of the inner walls of the alpha-cages during migration from one cage to another.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results on the evolution of microscopic dynamics of hybrid nanoparticles and their binary mixtures as a function of temperature and wave vector. We find unexpectedly a nonmonotonic dependence of the structural relaxation time of the nanoparticles as a function of the morphology. In binary mixtures of two of the largest nanoparticles studied, we observe re-entrant vitrification as a function of the volume fraction of the smaller nanoparticle, which is unusual for such high diameter ratio. Possible explanation for the observed behavior is provided. (C) 2010 American Institute of Physics. doi:10.1063/1.3495480]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamics of solvation of newly created charged species in dense dipolar liquids can proceed at a high speed with time constants often in the subpicosecond domain. The motion of the solvent molecules can be in the inertial limit at such short times. In this paper we present a microscopic study of the effects of inertial motion of solvent molecules on the solvation dynamics of a newly created ion in a model dipolar liquid. Interesting dynamical behavior emerges when the relative contribution of the translational modes in the wave-vector-dependent longitudinal relaxation time is significant. Especially, the theory predicts that the time correlation function of the solvation energy can become oscillatory in some limiting situations. In general, the dynamics becomes faster in the presence of the inertial contribution. We discuss the experimental situations where the inertial effects can be noticeable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown from an analytical theory that the solvation dynamics of a small ion can be controlled largely by the inertial response of the dipolar solvent when the liquid is in the underdamped limit. It is also shown that this inertial response arises primarily from the long wavelength (with wavevector k≃0) processes which have a collective excitation-like behaviour. The long time decay is dominated by the processes occurring at molecular lengthscales. The theoretical results are in good agreement with recent computer simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics calculations on methane sorbed in NaY (Si/Al = 3.0) employing realistic methane-methane and methane-zeolite intermolecular potential functions at different temperatures (50, 150, 220, and 300 K) and concentrations (2, 4, 6, and 8 molecules/cage) are reported. The thermodynamic results are in agreement with the available experimental data. Guest-guest and guest-host radial distribution functions (rdfs), energy distribution functions, distribution of cage occupancy, center-of-cage-center-of-mass (coc-com) rdfs, velocity autocorrelation functions for com and angular motion and the Fourier transformed power spectra, and diffusion coefficients are presented as a function of temperature and concentration. At 50 K, methane is localized near the adsorption site. Site-site migration and essentially free rotational motion are observed at 150 K. Molecules preferentially occupy the region near the inner surface of the alpha-cage. The vibrational frequencies for the com of methane shift toward higher values with decreasing temperature and increasing adsorbate concentration. The observed frequencies for com motion are 36, 53, and 85 cm-1 and for rotational motion at 50 K, 95 and 150 cm-1 in agreement with neutron scattering data. The diffusion coefficients show a type I behavior as a function of loading in agreement with NMR measurements. Cage-to-cage diffusion is found to be always mediated by the surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the vaporization and precipitation dynamics of a nanosilica encapsulated water droplet by levitating it acoustically and heating it with a CO2 laser. For all concentrations, we observe three phases: solvent evaporation, surface agglomeration, and precipitation leading to bowl or ring shaped structures. At higher concentrations, ring reorientation and rotation are seen consistently. The surface temperature from an infrared camera is seen to be dependent on the final geometrical shape of the droplet and its rotation induced by the acoustic field of the levitator. With nonuniform particle distribution, these structures can experience rupture which modifies the droplet rotational speed. (C) 2010 American Institute of Physics. doi:10.1063/1.3493178]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G(7)) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of similar to1.5 Angstrom from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400 K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures