282 resultados para Storage proteins
Resumo:
In a storage system where individual storage nodes are prone to failure, the redundant storage of data in a distributed manner across multiple nodes is a must to ensure reliability. Reed-Solomon codes possess the reconstruction property under which the stored data can be recovered by connecting to any k of the n nodes in the network across which data is dispersed. This property can be shown to lead to vastly improved network reliability over simple replication schemes. Also of interest in such storage systems is the minimization of the repair bandwidth, i.e., the amount of data needed to be downloaded from the network in order to repair a single failed node. Reed-Solomon codes perform poorly here as they require the entire data to be downloaded. Regenerating codes are a new class of codes which minimize the repair bandwidth while retaining the reconstruction property. This paper provides an overview of regenerating codes including a discussion on the explicit construction of optimum codes.
Resumo:
The results of an experimental investigation on the storage life and reprocessibility of methylene blue sensitized dichromated gelatin (MBDCG) holograms are reported. The major conclusions of the investigation are: (i) Storage of MBDCG holograms in normal laboratory conditions for long periods is possible and it diminishes somewhat their diffraction efficiency. (ii) The results on short time storage and long time storage are almost similar, thus indicating that the diffraction efficiency can be stabilized through storage in a relatively short period of time. (iii) The deterioration in the diffraction efficiency on storage is less [D(eta) < 20%] for gratings of low/medium initial efficiency (eta < 70%) and it is more for gratings of high initial efficiency. (iv) About 65-95% restoration of the diffraction efficiency can be accomplished through reprocessing. (v) The restoration of diffraction efficiency is almost perfect [R(eta) > 80%] for gratings of low/medium initial efficiency (eta <75%) whereas it is rather imperfect for gratings having high initial efficiency.
Resumo:
Background: Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results: In the present analysis, starting from C alpha positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions: Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.
Resumo:
Accelerated ageing studies for three composite propellant formulations, namely polystyrene (PS)/ ammonium perchlorate (AP), polymethylmethacrylate (PMMA)/AP and poly phenol formaldehyde (PPF)/AP have been carried out in the temperature range of 55-125°C. Measurements of the ultimate compression strength (Uc) and isothermal decomposition rate (TD rate) were monitored as a function of storage time and temperature. The change in Uc was found to be linearly dependent on the change in TD rate irrespective of the propellant systems. Analysis of the results further revealed that the cause of ageing for both Uc and burning rate (r) is the thermal decomposition of the propellant. The safe-life for the change in mechanical properties was found to be higher compared to the change in r for PS and PMMA based propellants.
Resumo:
A structure consisting of the polyproline-II or collagen-like helix immediately succeeded by a ?-turn is seen in several synthetic peptides and has been suggested to be the conformational requirement for proline hydroxylation in nascent procollagen. Using a simple algorithm for detecting secondary structures, we have analysed crystal structure data on 40 globular proteins and have found eight examples of the collagen-helix + ?-turn supersecondary structure in 15 proteins that contain the collagen-like helical segments.
Resumo:
Using first principles calculations, we show the high hydrogen storage capacity of metallacarboranes, where the transition metal (TM) atoms can bind up to 5 H-2-molecules. The average binding energy of similar to 0.3 eV/H favorably lies within the reversible adsorption range. Among the first row TM atoms, Sc and Ti are found to be the optimum in maximizing the H-2 storage (similar to 8 wt %) on the metallacarborane cluster. Being an integral part of the cage, TMs do not suffer from the aggregation problem, which has been the biggest hurdle for the success of TM-decorated graphitic materials for hydrogen storage. Furthermore, the presence of carbon atom in the cages permits linking the metallacarboranes to form metal organic frameworks, which are thus able to adsorb hydrogen via Kubas interaction, in addition to van der Waals physisorption.
Resumo:
A user friendly interactive computer program, CIRDIC, is developed which calculates the molar ellipticity and molar circular dichroic absorption coefficients from the CD spectrum. This, in combination with LOTUS 1-2-3 spread sheet, will give the spectra of above parameters vs wavelength. The code is implemented in MicroSoft FORTRAN 77 which runs on any IBM compatible PC under MSDOS environment.
Resumo:
The binding of 1-anilino-8-naphthalene-sulfonic acid to globular proteins at acidic pH has been investigated by electrospray ionization mass spectrometry (ESIMS). Mass spectra of apomyoglobin recorded in the pH range 2−7 establish that maximal ANS binding is observed at pH 4.0. As many as seven distinct species may be observed in the gas phase which correspond to protein molecules containing one to six molecules of bound ANS. At neutral pH only a single molecule of ANS is bound. In the case of cytochrome c, maximal binding is observed at pH 4.0, with five molecules being bound. Binding is suppressed at neutral pH. In both cases ESIMS demonstrates maximal ANS binding at pH values where the proteins have been reported to exist in molten globule states. ANS binding is not observed for lysozyme, which has a tightly folded structure over the entire pH range. Reduction of disulfide bonds in lysozyme leads to the detection of ANS-bound species at neutral pH. Binding is suppressed at low pH due to complete unfolding of the reduced protein. The results suggest that ESIMS may provide a convenient method of probing the stoichiometry and distribution of dye complexes with molten protein globules
Resumo:
The serendipitous observation of a C–Hcdots, three dots, centeredO hydrogen bond mediated polypeptide chain reversal in synthetic peptide helices has led to a search for the occurrence of a similar motif in protein structures. From a dataset of 634 proteins, 1304 helices terminating in a Schellman motif have been examined. The C–Hcdots, three dots, centeredO interaction between the T−4 CαH and T+1 C=O group (Ccdots, three dots, centeredO≤3.5 Å) becomes possible only when the T+1 residue adopts an extended β conformation (T is defined as the helix terminating residue adopting an αL conformation). In all, 111 examples of this chain reversal motif have been identified and the compositional and conformational preferences at positions T−4, T, and T+1 determined. A marked preference for residues like Ser, Glu and Gln is observed at T−4 position with the motif being further stabilized by the formation of a side-chain–backbone Ocdots, three dots, centeredH–N hydrogen bond involving the side-chain of residue T−4 and the N–H group of residue T+3. In as many as 57 examples, the segment following the helix was extended with three to four successive residues in β conformation. In a majority of these cases, the succeeding β strand lies approximately antiparallel with the helix, suggesting that the backbone C–Hcdots, three dots, centeredO interactions may provide a means of registering helices and strands in an antiparallel orientation. Two examples were identified in which extended registry was detected with two sets of C–Hcdots, three dots, centeredO hydrogen bonds between (T−4) CαHcdots, three dots, centeredC=O (T+1) and (T−8) CαHcdots, three dots, centeredC=O (T+3).
Resumo:
Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.
Resumo:
The 3' terminal 1255 nt sequence of Physalis mottle virus (PhMV) genomic RNA has been determined from a set of overlapping cDNA clones. The open reading frame (ORF) at the 3' terminus corresponds to the amino acid sequence of the coat protein (CP) determined earlier except for the absence of the dipeptide, Lys-Leu, at position 110-111. In addiition, the sequence upstream of the CP gene contains the message coding for 178 amino acid residues of the C-terminus of the putative replicase protein (RP). The sequence downstream of the CP gene contains an untranslated region whose terminal 80 nucleotides can be folded into a characteristic tRNA-like structure. A phylogenetic tree constructed after aligning separately the sequence of the CP, the replicase protein (RP) and the tRNA-like structure determined in this study with the corresponding sequences of other tymoviruses shows that PhMV wrongly named belladonna mottle virus [BDMV(I)] is a separate tymovirus and not another strain of BDMV(E) as originally envisaged. The phylogenetic tree in all the three cases is identical showing that any subset of genomic sequence of sufficient length can be used for establishing evolutionary relationships among tymoviruses.
Resumo:
The mechanism underlying homeostatic regulation of the plasma levels of free retinol-binding protein and free thyroxine, the systemic distribution of which is of great importance, has been investigated. A simple method has been developed to determine the rate of dissociation of a ligand from the binding protein. Analysis of the dissociation process of retinol-binding protein from prealbumin-2 reveals that the free retinol-binding protein pool undergoes massive flux, and the prealbumin-2 participates in homeostatic regulation of the free retinol-binding protein pool. Studies on the dissociation process of thyroxine from its plasma carrier proteins show that the various plasma carrier proteins share two roles. Of the two types of protein, the thyroxine-binding globulin (the high affinity binding protein) contributes only 27% of the free thyroxine in a rapid transition process, despite its being the major binding protein. But prealbumin-2, which has lower affinity towards thyroxine, participates mainly in a rapid flux of the free thyroxine pool. Thus thyroxine-binding globulin acts predominantly as a plasma reservoir of thyroxine, and also probably in the �buffering� action on plasma free thyroxine level, in the long term, while prealbumin-2 participates mainly in the maintainance of constancy of free thyroxine levels even in the short term. The existence of these two types of binding protein facilitates compensation for the metabolic flux of the free ligand and maintenance of the thyroxine pool within a very narrow range.