118 resultados para Speaker Recognition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inosine monophosphate dehydrogenase (IMPDH) enzyme involves in GMP biosynthesis pathway. Type I hIMPDH is expressed at lower levels in all cells, whereas type II is especially observed in acute myelogenous leukemia, chronic myelogenous leukemia cancer cells, and 10 ns simulation of the IMP-NAD(+) complex structures (PDB ID. 1B3O and 1JCN) have revealed the presence of a few conserved hydrophilic centers near carboxamide group of NAD(+). Three conserved water molecules (W1, W, and W1 `) in di-nucleotide binding pocket of enzyme have played a significant role in the recognition of carboxamide group (of NAD(+)) to D274 and H93 residues. Based on H-bonding interaction of conserved hydrophilic (water molecular) centers within IMP-NAD(+)-enzyme complexes and their recognition to NAD(+), some covalent modification at carboxamide group of di-nucleotide (NAD(+)) has been made by substituting the -CONH(2)group by -CONHNH2 (carboxyl hydrazide group) using water mimic inhibitor design protocol. The modeled structure of modified ligand may, though, be useful for the development of antileukemic agent or it could be act as better inhibitor for hIMPDH-II.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We develop noise robust features using Gammatone wavelets derived from the popular Gammatone functions. These wavelets incorporate the characteristics of human peripheral auditory systems, in particular the spatially-varying frequency response of the basilar membrane. We refer to the new features as Gammatone Wavelet Cepstral Coefficients (GWCC). The procedure involved in extracting GWCC from a speech signal is similar to that of the conventional Mel-Frequency Cepstral Coefficients (MFCC) technique, with the difference being in the type of filterbank used. We replace the conventional mel filterbank in MFCC with a Gammatone wavelet filterbank, which we construct using Gammatone wavelets. We also explore the effect of Gammatone filterbank based features (Gammatone Cepstral Coefficients (GCC)) for robust speech recognition. On AURORA 2 database, a comparison of GWCCs and GCCs with MFCCs shows that Gammatone based features yield a better recognition performance at low SNRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses a novel high-speed approach for human action recognition in H. 264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of our work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can effect in reduced hardware utilization and fast recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust in outdoor as well as indoor testing scenarios. We have tested our method on two benchmark action datasets and achieved more than 85% accuracy. The proposed algorithm classifies actions with speed (>2000 fps) approximately 100 times more than existing state-of-the-art pixel-domain algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-species mating aggregations are crowded environments within which mate recognition must occur. Mating aggregations of fig wasps can consist of thousands of individuals of many species that attain sexual maturity simultaneously and mate in the same microenvironment, i.e, in syntopy, within the close confines of an enclosed globular inflorescence called a syconium - a system that has many signalling constraints such as darkness and crowding. All wasps develop within individual galled flowers. Since mating mostly occurs when females are still confined within their galls,, male wasps have the additional burden of detecting conspecific females that are ``hidden'' behind barriers consisting of gall walls. In Ficus racemosa, we investigated signals used by pollinating fig wasp males to differentiate conspecific females from females of other syntopic fig wasp species. Male Ceratosolen fusciceps could detect conspecific females using cues from galls containing females, empty galls, as well as cues from gall volatiles and gall surface hydrocarbons. In many figs, syconia are pollinated by single foundress wasps, leading to high levels of wasp inbreeding due to sibmating. In F. racemosa, as most syconia contain many foundresses, we expected male pollinators to prefer non-sib females to female siblings to reduce inbreeding. We used galls containing females from non-natal figs as a proxy for non-sibs and those from natal figs as a proxy for sibling females. We found that males preferred galls of female pollinators from natal figs. However, males were undecided when given a choice between galls containing non-pollinator females from natal syconia and pollinator females from non-natal syconia, suggesting olfactory imprinting by the natal syconial environment. (C) 2013 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzymes utilizing pyridoxal 5'-phosphate dependent mechanism for catalysis are observed in all cellular forms of living organisms. PLP-dependent enzymes catalyze a wide variety of reactions involving amino acid substrates and their analogs. Structurally, these ubiquitous enzymes have been classified into four major fold types. We have carried out investigations on the structure and function of fold type I enzymes serine hydroxymethyl transferase and acetylornithine amino transferase, fold type n enzymes catabolic threonine deaminase, D-serine deaminase, D-cysteine desulfhydrase and diaminopropionate ammonia lyase. This review summarizes the major findings of investigations on fold type II enzymes in the context of similar studies on other PLP-dependent enzymes. Fold type II enzymes participate in pathways of both degradation and synthesis of amino acids. Polypeptide folds of these enzymes, features of their active sites, nature of interactions between the cofactor and the polypeptide, oligomeric structure, catalytic activities with various ligands, origin of specificity and plausible regulation of activity are briefly described. Analysis of the available crystal structures of fold type II enzymes revealed five different classes. The dimeric interfaces found in these enzymes vary across the classes and probably have functional significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we aim at reducing the error rate of the online Tamil symbol recognition system by employing multiple experts to reevaluate certain decisions of the primary support vector machine classifier. Motivated by the relatively high percentage of occurrence of base consonants in the script, a reevaluation technique has been proposed to correct any ambiguities arising in the base consonants. Secondly, a dynamic time-warping method is proposed to automatically extract the discriminative regions for each set of confused characters. Class-specific features derived from these regions aid in reducing the degree of confusion. Thirdly, statistics of specific features are proposed for resolving any confusions in vowel modifiers. The reevaluation approaches are tested on two databases (a) the isolated Tamil symbols in the IWFHR test set, and (b) the symbols segmented from a set of 10,000 Tamil words. The recognition rate of the isolated test symbols of the IWFHR database improves by 1.9 %. For the word database, the incorporation of the reevaluation step improves the symbol recognition rate by 3.5 % (from 88.4 to 91.9 %). This, in turn, boosts the word recognition rate by 11.9 % (from 65.0 to 76.9 %). The reduction in the word error rate has been achieved using a generic approach, without the incorporation of language models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human Leukocyte Antigen (HLA) plays an important role, in presenting foreign pathogens to our immune system, there by eliciting early immune responses. HLA genes are highly polymorphic, giving rise to diverse antigen presentation capability. An important factor contributing to enormous variations in individual responses to diseases is differences in their HLA profiles. The heterogeneity in allele specific disease responses decides the overall disease epidemiological outcome. Here we propose an agent based computational framework, capable of incorporating allele specific information, to analyze disease epidemiology. This framework assumes a SIR model to estimate average disease transmission and recovery rate. Using epitope prediction tool, it performs sequence based epitope detection for a given the pathogenic genome and derives an allele specific disease susceptibility index depending on the epitope detection efficiency. The allele specific disease transmission rate, that follows, is then fed to the agent based epidemiology model, to analyze the disease outcome. The methodology presented here has a potential use in understanding how a disease spreads and effective measures to control the disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural information over the entire course of binding interactions based on the analyses of energy landscapes is described, which provides a framework to understand the events involved during biomolecular recognition. Conformational dynamics of malectin's exquisite selectivity for diglucosylated N-glycan (Dig-N-glycan), a highly flexible oligosaccharide comprising of numerous dihedral torsion angles, are described as an example. For this purpose, a novel approach based on hierarchical sampling for acquiring metastable molecular conformations constituting low-energy minima for understanding the structural features involved in a biologic recognition is proposed. For this purpose, four variants of principal component analysis were employed recursively in both Cartesian space and dihedral angles space that are characterized by free energy landscapes to select the most stable conformational substates. Subsequently, k-means clustering algorithm was implemented for geometric separation of the major native state to acquire a final ensemble of metastable conformers. A comparison of malectin complexes was then performed to characterize their conformational properties. Analyses of stereochemical metrics and other concerted binding events revealed surface complementarity, cooperative and bidentate hydrogen bonds, water-mediated hydrogen bonds, carbohydrate-aromatic interactions including CH-pi and stacking interactions involved in this recognition. Additionally, a striking structural transition from loop to beta-strands in malectin CRD upon specific binding to Dig-N-glycan is observed. The interplay of the above-mentioned binding events in malectin and Dig-N-glycan supports an extended conformational selection model as the underlying binding mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we showed that a freshwater fish, the climbing perch (Anabas testudineus) is incapable of using chemical communication but employs visual cues to acquire familiarity and distinguish a familiar group of conspecifics from an unfamiliar one. Moreover, the isolation of olfactory signals from visual cues did not affect the recognition and preference for a familiar shoal in this species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A characterization of the voice source (VS) signal by the pitch synchronous (PS) discrete cosine transform (DCT) is proposed. With the integrated linear prediction residual (ILPR) as the VS estimate, the PS DCT of the ILPR is evaluated as a feature vector for speaker identification (SID). On TIMIT and YOHO databases, using a Gaussian mixture model (GMM)-based classifier, it performs on par with existing VS-based features. On the NIST 2003 database, fusion with a GMM-based classifier using MFCC features improves the identification accuracy by 12% in absolute terms, proving that the proposed characterization has good promise as a feature for SID studies. (C) 2015 Acoustical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large variations in human actions lead to major challenges in computer vision research. Several algorithms are designed to solve the challenges. Algorithms that stand apart, help in solving the challenge in addition to performing faster and efficient manner. In this paper, we propose a human cognition inspired projection based learning for person-independent human action recognition in the H.264/AVC compressed domain and demonstrate a PBL-McRBEN based approach to help take the machine learning algorithms to the next level. Here, we use gradient image based feature extraction process where the motion vectors and quantization parameters are extracted and these are studied temporally to form several Group of Pictures (GoP). The GoP is then considered individually for two different bench mark data sets and the results are classified using person independent human action recognition. The functional relationship is studied using Projection Based Learning algorithm of the Meta-cognitive Radial Basis Function Network (PBL-McRBFN) which has a cognitive and meta-cognitive component. The cognitive component is a radial basis function network while the Meta-Cognitive Component(MCC) employs self regulation. The McC emulates human cognition like learning to achieve better performance. Performance of the proposed approach can handle sparse information in compressed video domain and provides more accuracy than other pixel domain counterparts. Performance of the feature extraction process achieved more than 90% accuracy using the PTIL-McRBFN which catalyzes the speed of the proposed high speed action recognition algorithm. We have conducted twenty random trials to find the performance in GoP. The results are also compared with other well known classifiers in machine learning literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose to develop a 3-D optical flow features based human action recognition system. Optical flow based features are employed here since they can capture the apparent movement in object, by design. Moreover, they can represent information hierarchically from local pixel level to global object level. In this work, 3-D optical flow based features a re extracted by combining the 2-1) optical flow based features with the depth flow features obtained from depth camera. In order to develop an action recognition system, we employ a Meta-Cognitive Neuro-Fuzzy Inference System (McFIS). The m of McFIS is to find the decision boundary separating different classes based on their respective optical flow based features. McFIS consists of a neuro-fuzzy inference system (cognitive component) and a self-regulatory learning mechanism (meta-cognitive component). During the supervised learning, self-regulatory learning mechanism monitors the knowledge of the current sample with respect to the existing knowledge in the network and controls the learning by deciding on sample deletion, sample learning or sample reserve strategies. The performance of the proposed action recognition system was evaluated on a proprietary data set consisting of eight subjects. The performance evaluation with standard support vector machine classifier and extreme learning machine indicates improved performance of McFIS is recognizing actions based of 3-D optical flow based features.