127 resultados para Software eutils-search
Resumo:
Software transactional memory (STM) has been proposed as a promising programming paradigm for shared memory multi-threaded programs as an alternative to conventional lock based synchronization primitives. Typical STM implementations employ a conflict detection scheme, which works with uniform access granularity, tracking shared data accesses either at word/cache line or at object level. It is well known that a single fixed access tracking granularity cannot meet the conflicting goals of reducing false conflicts without impacting concurrency adversely. A fine grained granularity while improving concurrency can have an adverse impact on performance due to lock aliasing, lock validation overheads, and additional cache pressure. On the other hand, a coarse grained granularity can impact performance due to reduced concurrency. Thus, in general, a fixed or uniform granularity access tracking (UGAT) scheme is application-unaware and rarely matches the access patterns of individual application or parts of an application, leading to sub-optimal performance for different parts of the application(s). In order to mitigate the disadvantages associated with UGAT scheme, we propose a Variable Granularity Access Tracking (VGAT) scheme in this paper. We propose a compiler based approach wherein the compiler uses inter-procedural whole program static analysis to select the access tracking granularity for different shared data structures of the application based on the application's data access pattern. We describe our prototype VGAT scheme, using TL2 as our STM implementation. Our experimental results reveal that VGAT-STM scheme can improve the application performance of STAMP benchmarks from 1.87% to up to 21.2%.
Resumo:
Precision, sophistication and economic factors in many areas of scientific research that demand very high magnitude of compute power is the order of the day. Thus advance research in the area of high performance computing is getting inevitable. The basic principle of sharing and collaborative work by geographically separated computers is known by several names such as metacomputing, scalable computing, cluster computing, internet computing and this has today metamorphosed into a new term known as grid computing. This paper gives an overview of grid computing and compares various grid architectures. We show the role that patterns can play in architecting complex systems, and provide a very pragmatic reference to a set of well-engineered patterns that the practicing developer can apply to crafting his or her own specific applications. We are not aware of pattern-oriented approach being applied to develop and deploy a grid. There are many grid frameworks that are built or are in the process of being functional. All these grids differ in some functionality or the other, though the basic principle over which the grids are built is the same. Despite this there are no standard requirements listed for building a grid. The grid being a very complex system, it is mandatory to have a standard Software Architecture Specification (SAS). We attempt to develop the same for use by any grid user or developer. Specifically, we analyze the grid using an object oriented approach and presenting the architecture using UML. This paper will propose the usage of patterns at all levels (analysis. design and architectural) of the grid development.
Resumo:
Three dimensional digital model of a representative human kidney is needed for a surgical simulator that is capable of simulating a laparoscopic surgery involving kidney. Buying a three dimensional computer model of a representative human kidney, or reconstructing a human kidney from an image sequence using commercial software, both involve (sometimes significant amount of) money. In this paper, author has shown that one can obtain a three dimensional surface model of human kidney by making use of images from the Visible Human Data Set and a few free software packages (ImageJ, ITK-SNAP, and MeshLab in particular). Images from the Visible Human Data Set, and the software packages used here, both do not cost anything. Hence, the practice of extracting the geometry of a representative human kidney for free, as illustrated in the present work, could be a free alternative to the use of expensive commercial software or to the purchase of a digital model.
Resumo:
The spatial search problem on regular lattice structures in integer number of dimensions d >= 2 has been studied extensively, using both coined and coinless quantum walks. The relativistic Dirac operator has been a crucial ingredient in these studies. Here, we investigate the spatial search problem on fractals of noninteger dimensions. Although the Dirac operator cannot be defined on a fractal, we construct the quantum walk on a fractal using the flip-flop operator that incorporates a Klein-Gordon mode. We find that the scaling behavior of the spatial search is determined by the spectral (and not the fractal) dimension. Our numerical results have been obtained on the well-known Sierpinski gaskets in two and three dimensions.
Resumo:
We report our search for and a possible detection of periodic radio pulses at 34.5 MHz from the Fermi Large Area Telescope pulsar J1732-3131. The candidate detection has been possible in only one of the many sessions of observations made with the low-frequency array at Gauribidanur, India, when the otherwise radio weak pulsar may have apparently brightened many folds. The candidate dispersion measure along the sight line, based on the broad periodic profiles from �20min of data, is estimated to be 15.44 ± 0.32 pccc -1. We present the details of our periodic and single-pulse search, and discuss the results and their implications relevant to both, the pulsar and the intervening medium. © 2012 RAS.
Resumo:
Protein structure comparison is essential for understanding various aspects of protein structure, function and evolution. It can be used to explore the structural diversity and evolutionary patterns of protein families. In view of the above, a new algorithm is proposed which performs faster protein structure comparison using the peptide backbone torsional angles. It is fast, robust, computationally less expensive and efficient in finding structural similarities between two different protein structures and is also capable of identifying structural repeats within the same protein molecule.
Resumo:
Our everyday visual experience frequently involves searching for objects in clutter. Why are some searches easy and others hard? It is generally believed that the time taken to find a target increases as it becomes similar to its surrounding distractors. Here, I show that while this is qualitatively true, the exact relationship is in fact not linear. In a simple search experiment, when subjects searched for a bar differing in orientation from its distractors, search time was inversely proportional to the angular difference in orientation. Thus, rather than taking search reaction time (RT) to be a measure of target-distractor similarity, we can literally turn search time on its head (i.e. take its reciprocal 1/RT) to obtain a measure of search dissimilarity that varies linearly over a large range of target-distractor differences. I show that this dissimilarity measure has the properties of a distance metric, and report two interesting insights come from this measure: First, for a large number of searches, search asymmetries are relatively rare and when they do occur, differ by a fixed distance. Second, search distances can be used to elucidate object representations that underlie search - for example, these representations are roughly invariant to three-dimensional view. Finally, search distance has a straightforward interpretation in the context of accumulator models of search, where it is proportional to the discriminative signal that is integrated to produce a response. This is consistent with recent studies that have linked this distance to neuronal discriminability in visual cortex. Thus, while search time remains the more direct measure of visual search, its reciprocal also has the potential for interesting and novel insights. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
We consider a visual search problem studied by Sripati and Olson where the objective is to identify an oddball image embedded among multiple distractor images as quickly as possible. We model this visual search task as an active sequential hypothesis testing problem (ASHT problem). Chernoff in 1959 proposed a policy in which the expected delay to decision is asymptotically optimal. The asymptotics is under vanishing error probabilities. We first prove a stronger property on the moments of the delay until a decision, under the same asymptotics. Applying the result to the visual search problem, we then propose a ``neuronal metric'' on the measured neuronal responses that captures the discriminability between images. From empirical study we obtain a remarkable correlation (r = 0.90) between the proposed neuronal metric and speed of discrimination between the images. Although this correlation is lower than with the L-1 metric used by Sripati and Olson, this metric has the advantage of being firmly grounded in formal decision theory.
Resumo:
In pay-per-click sponsored search auctions which are currently extensively used by search engines, the auction for a keyword involves a certain number of advertisers (say k) competing for available slots (say m) to display their advertisements (ads for short). A sponsored search auction for a keyword is typically conducted for a number of rounds (say T). There are click probabilities mu(ij) associated with each agent slot pair (agent i and slot j). The search engine would like to maximize the social welfare of the advertisers, that is, the sum of values of the advertisers for the keyword. However, the search engine does not know the true values advertisers have for a click to their respective advertisements and also does not know the click probabilities. A key problem for the search engine therefore is to learn these click probabilities during the initial rounds of the auction and also to ensure that the auction mechanism is truthful. Mechanisms for addressing such learning and incentives issues have recently been introduced. These mechanisms, due to their connection to the multi-armed bandit problem, are aptly referred to as multi-armed bandit (MAB) mechanisms. When m = 1, exact characterizations for truthful MAB mechanisms are available in the literature. Recent work has focused on the more realistic but non-trivial general case when m > 1 and a few promising results have started appearing. In this article, we consider this general case when m > 1 and prove several interesting results. Our contributions include: (1) When, mu(ij)s are unconstrained, we prove that any truthful mechanism must satisfy strong pointwise monotonicity and show that the regret will be Theta T7) for such mechanisms. (2) When the clicks on the ads follow a certain click precedence property, we show that weak pointwise monotonicity is necessary for MAB mechanisms to be truthful. (3) If the search engine has a certain coarse pre-estimate of mu(ij) values and wishes to update them during the course of the T rounds, we show that weak pointwise monotonicity and type-I separatedness are necessary while weak pointwise monotonicity and type-II separatedness are sufficient conditions for the MAB mechanisms to be truthful. (4) If the click probabilities are separable into agent-specific and slot-specific terms, we provide a characterization of MAB mechanisms that are truthful in expectation.
Resumo:
How do we perform rapid visual categorization?It is widely thought that categorization involves evaluating the similarity of an object to other category items, but the underlying features and similarity relations remain unknown. Here, we hypothesized that categorization performance is based on perceived similarity relations between items within and outside the category. To this end, we measured the categorization performance of human subjects on three diverse visual categories (animals, vehicles, and tools) and across three hierarchical levels (superordinate, basic, and subordinate levels among animals). For the same subjects, we measured their perceived pair-wise similarities between objects using a visual search task. Regardless of category and hierarchical level, we found that the time taken to categorize an object could be predicted using its similarity to members within and outside its category. We were able to account for several classic categorization phenomena, such as (a) the longer times required to reject category membership; (b) the longer times to categorize atypical objects; and (c) differences in performance across tasks and across hierarchical levels. These categorization times were also accounted for by a model that extracts coarse structure from an image. The striking agreement observed between categorization and visual search suggests that these two disparate tasks depend on a shared coarse object representation.
Resumo:
This article considers a class of deploy and search strategies for multi-robot systems and evaluates their performance. The application framework used is deployment of a system of autonomous mobile robots equipped with required sensors in a search space to gather information. The lack of information about the search space is modelled as an uncertainty density distribution. The agents are deployed to maximise single-step search effectiveness. The centroidal Voronoi configuration, which achieves a locally optimal deployment, forms the basis for sequential deploy and search (SDS) and combined deploy and search (CDS) strategies. Completeness results are provided for both search strategies. The deployment strategy is analysed in the presence of constraints on robot speed and limit on sensor range for the convergence of trajectories with corresponding control laws responsible for the motion of robots. SDS and CDS strategies are compared with standard greedy and random search strategies on the basis of time taken to achieve reduction in the uncertainty density below a desired level. The simulation experiments reveal several important issues related to the dependence of the relative performances of the search strategies on parameters such as the number of robots, speed of robots and their sensor range limits.
Resumo:
In large flexible software systems, bloat occurs in many forms, causing excess resource utilization and resource bottlenecks. This results in lost throughput and wasted joules. However, mitigating bloat is not easy; efforts are best applied where savings would be substantial. To aid this we develop an analytical model establishing the relation between bottleneck in resources, bloat, performance and power. Analyses with the model places into perspective results from the first experimental study of the power-performance implications of bloat. In the experiments we find that while bloat reduction can provide as much as 40% energy savings, the degree of impact depends on hardware and software characteristics. We confirm predictions from our model with selected results from our experimental study. Our findings show that a software-only view is inadequate when assessing the effects of bloat. The impact of bloat on physical resource usage and power should be understood for a full systems perspective to properly deploy bloat reduction solutions and reap their power-performance benefits.
Resumo:
Most Java programmers would agree that Java is a language that promotes a philosophy of “create and go forth”. By design, temporary objects are meant to be created on the heap, possibly used and then abandoned to be collected by the garbage collector. Excessive generation of temporary objects is termed “object churn” and is a form of software bloat that often leads to performance and memory problems. To mitigate this problem, many compiler optimizations aim at identifying objects that may be allocated on the stack. However, most such optimizations miss large opportunities for memory reuse when dealing with objects inside loops or when dealing with container objects. In this paper, we describe a novel algorithm that detects bloat caused by the creation of temporary container and String objects within a loop. Our analysis determines which objects created within a loop can be reused. Then we describe a source-to-source transformation that efficiently reuses such objects. Empirical evaluation indicates that our solution can reduce upto 40% of temporary object allocations in large programs, resulting in a performance improvement that can be as high as a 20% reduction in the run time, specifically when a program has a high churn rate or when the program is memory intensive and needs to run the GC often.
Resumo:
Low-complexity near-optimal detection of signals in MIMO systems with large number (tens) of antennas is getting increased attention. In this paper, first, we propose a variant of Markov chain Monte Carlo (MCMC) algorithm which i) alleviates the stalling problem encountered in conventional MCMC algorithm at high SNRs, and ii) achieves near-optimal performance for large number of antennas (e.g., 16×16, 32×32, 64×64 MIMO) with 4-QAM. We call this proposed algorithm as randomized MCMC (R-MCMC) algorithm. Second, we propose an other algorithm based on a random selection approach to choose candidate vectors to be tested in a local neighborhood search. This algorithm, which we call as randomized search (RS) algorithm, also achieves near-optimal performance for large number of antennas with 4-QAM. The complexities of the proposed R-MCMC and RS algorithms are quadratic/sub-quadratic in number of transmit antennas, which are attractive for detection in large-MIMO systems. We also propose message passing aided R-MCMC and RS algorithms, which are shown to perform well for higher-order QAM.