200 resultados para Site classification
Resumo:
A fundamental task in bioinformatics involves a transfer of knowledge from one protein molecule onto another by way of recognizing similarities. Such similarities are obtained at different levels, that of sequence, whole fold, or important substructures. Comparison of binding sites is important to understand functional similarities among the proteins and also to understand drug cross-reactivities. Current methods in literature have their own merits and demerits, warranting exploration of newer concepts and algorithms, especially for large-scale comparisons and for obtaining accurate residue-wise mappings. Here, we report the development of a new algorithm, PocketAlign, for obtaining structural superpositions of binding sites. The software is available as a web-service at http://proline.physicslisc.emetin/pocketalign/. The algorithm encodes shape descriptors in the form of geometric perspectives, supplemented by chemical group classification. The shape descriptor considers several perspectives with each residue as the focus and captures relative distribution of residues around it in a given site. Residue-wise pairings are computed by comparing the set of perspectives of the first site with that of the second, followed by a greedy approach that incrementally combines residue pairings into a mapping. The mappings in different frames are then evaluated by different metrics encoding the extent of alignment of individual geometric perspectives. Different initial seed alignments are computed, each subsequently extended by detecting consequential atomic alignments in a three-dimensional grid, and the best 500 stored in a database. Alignments are then ranked, and the top scoring alignments reported, which are then streamed into Pymol for visualization and analyses. The method is validated for accuracy and sensitivity and benchmarked against existing methods. An advantage of PocketAlign, as compared to some of the existing tools available for binding site comparison in literature, is that it explores different schemes for identifying an alignment thus has a better potential to capture similarities in ligand recognition abilities. PocketAlign, by finding a detailed alignment of a pair of sites, provides insights as to why two sites are similar and which set of residues and atoms contribute to the similarity.
Resumo:
Part classification and coding is still considered as laborious and time-consuming exercise. Keeping in view, the crucial role, which it plays, in developing automated CAPP systems, the attempts have been made in this article to automate a few elements of this exercise using a shape analysis model. In this study, a 24-vector directional template is contemplated to represent the feature elements of the parts (candidate and prototype). Various transformation processes such as deformation, straightening, bypassing, insertion and deletion are embedded in the proposed simulated annealing (SA)-like hybrid algorithm to match the candidate part with their prototype. For a candidate part, searching its matching prototype from the information data is computationally expensive and requires large search space. However, the proposed SA-like hybrid algorithm for solving the part classification problem considerably minimizes the search space and ensures early convergence of the solution. The application of the proposed approach is illustrated by an example part. The proposed approach is applied for the classification of 100 candidate parts and their prototypes to demonstrate the effectiveness of the algorithm. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Land cover (LC) refers to what is actually present on the ground and provide insights into the underlying solution for improving the conditions of many issues, from water pollution to sustainable economic development. One of the greatest challenges of modeling LC changes using remotely sensed (RS) data is of scale-resolution mismatch: that the spatial resolution of detail is less than what is required, and that this sub-pixel level heterogeneity is important but not readily knowable. However, many pixels consist of a mixture of multiple classes. The solution to mixed pixel problem typically centers on soft classification techniques that are used to estimate the proportion of a certain class within each pixel. However, the spatial distribution of these class components within the pixel remains unknown. This study investigates Orthogonal Subspace Projection - an unmixing technique and uses pixel-swapping algorithm for predicting the spatial distribution of LC at sub-pixel resolution. Both the algorithms are applied on many simulated and actual satellite images for validation. The accuracy on the simulated images is ~100%, while IRS LISS-III and MODIS data show accuracy of 76.6% and 73.02% respectively. This demonstrates the relevance of these techniques for applications such as urban-nonurban, forest-nonforest classification studies etc.
Resumo:
Combining experiments with first-principles calculations, we show that site-specific doping of Mn into SrTiO(3) has a decisive influence on the dielectric properties of these doped systems. We find that phonon contributions to the dielectric constant invariably decrease sharply on doping at any site. However, a sizable, random dipolar contribution only for Mn at the Sr site arises from a strong off-centric displacement of Mn in spite of Mn being in a non-d(0) state; this leads to a large dielectric constant at higher temperatures and gives rise to a relaxor ferroelectric behavior at lower temperatures. We also investigate magnetic properties in detail and critically reevaluate the possibility of a true multiglass state in such systems.
Resumo:
A majority of enzymes show a high degree of specificity toward a particular metal ion in their catalytic reaction. However, Type II restriction endonuclease (REase) R.KpnI, which is the first member of the HNH superfamily of REases, exhibits extraordinary diversity in metal ion dependent DNA cleavage. Several alkaline earth and transition group metal ions induce high fidelity and promiscuous cleavage or inhibition depending upon their concentration. The metal ions having different ionic radii and co-ordination geometries readily replace each other from the enzyme's active site, revealing its plasticity. Ability of R KpnI to cleave DNA with both alkaline earth and transition group metal ions having varied ionic radii could imply utilization of different catalytic site(s). However, mutation of the invariant His residue of the HNH motif caused abolition of the enzyme activity with all of the cofactors, indicating that the enzyme follows a single metal ion catalytic mechanism for DNA cleavage. Indispensability of His in nucleophile activation together with broad cofactor tolerance of the enzyme indicates electrostatic stabilization function of metal ions during catalysis. Nevertheless, a second metal ion is recruited at higher concentrations to either induce promiscuity or inhibit the DNA cleavage. Regulation of the endonuclease activity and fidelity by a second metal ion binding is a unique feature of R.KpnI among REases and HNH nucleases. The active site plasticity of R.KpnI opens up avenues for redesigning cofactor specificities and generation of mutants specific to a particular metal ion.
Resumo:
This study in Western Ghats, India, investigates the relation between nesting sites of ants and a single remotely sensed variable: the Normalised Difference Vegetation Index (NDVI). We carried out sampling in 60 plots each measuring 30 x 30 m and recorded nest sites of 13 ant species. We found that NDVI values at the nesting sites varied considerably between individual species and also between the six functional groups the ants belong to. The functional groups Cryptic Species, Tropical Climate Specialists and Specialist Predators were present in regions with high NDVI whereas Hot Climate Specialists and Opportunists were found in sites with low NDVI. As expected we found that low NDVI values were associated with scrub jungles and high NDVI values with evergreen forests. Interestingly, we found that Pachycondyla rufipes, an ant species found only in deciduous and evergreen forests, established nests only in sites with low NDVI (range = 0.015 - 0.1779). Our results show that these low NDVI values in deciduous and evergreen forests correspond to canopy gaps in otherwise closed deciduous and evergreen forests. Subsequent fieldwork confirmed the observed high prevalence of P. rufipes in these NDVI-constrained areas. We discuss the value of using NDVI for the remote detection and distinction of ant nest sites.
Resumo:
In general the objective of accurately encoding the input data and the objective of extracting good features to facilitate classification are not consistent with each other. As a result, good encoding methods may not be effective mechanisms for classification. In this paper, an earlier proposed unsupervised feature extraction mechanism for pattern classification has been extended to obtain an invertible map. The method of bimodal projection-based features was inspired by the general class of methods called projection pursuit. The principle of projection pursuit concentrates on projections that discriminate between clusters and not faithful representations. The basic feature map obtained by the method of bimodal projections has been extended to overcome this. The extended feature map is an embedding of the input space in the feature space. As a result, the inverse map exists and hence the representation of the input space in the feature space is exact. This map can be naturally expressed as a feedforward neural network.
Resumo:
Structural alignments are the most widely used tools for comparing proteins with low sequence similarity. The main contribution of this paper is to derive various kernels on proteins from structural alignments, which do not use sequence information. Central to the kernels is a novel alignment algorithm which matches substructures of fixed size using spectral graph matching techniques. We derive positive semi-definite kernels which capture the notion of similarity between substructures. Using these as base more sophisticated kernels on protein structures are proposed. To empirically evaluate the kernels we used a 40% sequence non-redundant structures from 15 different SCOP superfamilies. The kernels when used with SVMs show competitive performance with CE, a state of the art structure comparison program.
Resumo:
This paper presents a novel Second Order Cone Programming (SOCP) formulation for large scale binary classification tasks. Assuming that the class conditional densities are mixture distributions, where each component of the mixture has a spherical covariance, the second order statistics of the components can be estimated efficiently using clustering algorithms like BIRCH. For each cluster, the second order moments are used to derive a second order cone constraint via a Chebyshev-Cantelli inequality. This constraint ensures that any data point in the cluster is classified correctly with a high probability. This leads to a large margin SOCP formulation whose size depends on the number of clusters rather than the number of training data points. Hence, the proposed formulation scales well for large datasets when compared to the state-of-the-art classifiers, Support Vector Machines (SVMs). Experiments on real world and synthetic datasets show that the proposed algorithm outperforms SVM solvers in terms of training time and achieves similar accuracies.
Resumo:
The covalent linkage between the side-chain and the backbone nitrogen atom of proline leads to the formation of the five-membered pyrrolidine ring and hence restriction of the backbone torsional angle phi to values of -60 degrees +/- 30 degrees for the L-proline. Diproline segments constitute a chain fragment with considerably reduced conformational choices. In the current study, the conformational states for the diproline segment ((L)Pro-(L)Pro) found in proteins has been investigated with an emphasis on the cis and trans states for the Pro-Pro peptide bond. The occurrence of diproline segments in turns and other secondary structures has been studied and compared to that of Xaa-Pro-Yaa segments in proteins which gives us a better understanding on the restriction imposed on other residues by the diproline segment and the single proline residue. The study indicates that P(II)-P(II) and P(II)-alpha are the most favorable conformational states for the diproline segment. The analysis on Xaa-Pro-Yaa sequences reveals that the XaaPro peptide bond exists preferably as the trans conformer rather than the cis conformer. The present study may lead to a better understanding of the behavior of proline occurring in diproline segments which can facilitate various designed diproline-based synthetic templates for biological and structural studies. (C) 2011 Wiley Periodicals, Inc. Biopolymers 97: 54-64, 2012.