246 resultados para Shortest path problem
Resumo:
In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.
Resumo:
This paper addresses the problem of secure path key establishment in wireless sensor networks that uses the random key predistribution technique. Inspired by the recent proxy-based scheme in [1] and [2], we introduce a fiiend-based scheme for establishing pairwise keys securely. We show that the chances of finding friends in a neighbourhood are considerably more than that of finding proxies, leading to lower communication overhead. Further, we prove that the friendbased scheme performs better than the proxy-based scheme in terms of resilience against node capture.
Resumo:
Tanner Graph representation of linear block codes is widely used by iterative decoding algorithms for recovering data transmitted across a noisy communication channel from errors and erasures introduced by the channel. The stopping distance of a Tanner graph T for a binary linear block code C determines the number of erasures correctable using iterative decoding on the Tanner graph T when data is transmitted across a binary erasure channel using the code C. We show that the problem of finding the stopping distance of a Tanner graph is hard to approximate within any positive constant approximation ratio in polynomial time unless P = NP. It is also shown as a consequence that there can be no approximation algorithm for the problem achieving an approximation ratio of 2(log n)(1-epsilon) for any epsilon > 0 unless NP subset of DTIME(n(poly(log n))).
Resumo:
We present a generic study of inventory costs in a factory stockroom that supplies component parts to an assembly line. Specifically, we are concerned with the increase in component inventories due to uncertainty in supplier lead-times, and the fact that several different components must be present before assembly can begin. It is assumed that the suppliers of the various components are independent, that the suppliers' operations are in statistical equilibrium, and that the same amount of each type of component is demanded by the assembly line each time a new assembly cycle is scheduled to begin. We use, as a measure of inventory cost, the expected time for which an order of components must be held in the stockroom from the time it is delivered until the time it is consumed by the assembly line. Our work reveals the effects of supplier lead-time variability, the number of different types of components, and their desired service levels, on the inventory cost. In addition, under the assumptions that inventory holding costs and the cost of delaying assembly are linear in time, we study optimal ordering policies and present an interesting characterization that is independent of the supplier lead-time distributions.
Resumo:
A complete analytical solution is obtained, by using an integral transform method, for the porous-wavemaker problem, when the effect of surface tension is taken into account on the free surface of water of finite-depth in which surface waves are produced by small horizontal oscillations of a porous vertical plate. The final results are expressed in the form of convergent integrals as well as series and known results are reproduced when surface tension is neglected.
Resumo:
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
Resumo:
Infrared spectra of atmospherically important dimethylquinolines (DMQs), namely 2,4-DMQ, 2,6-DMQ, 2,7-DMQ, and 2,8-DMQ in the gas phase at 80 degrees C were recorded using a long variable path-length cell. DFT calculations were carried out to assign the bands in the experimentally observed spectra at the B3LYP/6-31G* level of theory. The spectral assignments particularly for the C-H stretching modes could not be made unambiguously using calculated anharmonic or scaled harmonic frequencies. To resolve this problem, a scaled force field method of assignment was used. Assignment of fundamental modes was confirmed by potential energy distributions (PEDs) of the normal modes derived by the scaled force fields using a modified version of the UMAT program in the QCPE package. We demonstrate that for large molecules such as the DMQs, the scaling of the force field is more effective in arriving at the correct assignment of the fundamentals for a quantitative vibrational analysis. An error analysis of the mean deviation of the calculated harmonic, anharmonic, and force field fitted frequencies from the observed frequency provides strong evidence for the correctness of the assignment.
Resumo:
A continuum model based on the critical state theory of soil mechanics is used to generate stress and density profiles, and to compute discharge velocities for the plane flow of cohesionless materials. Two types of yield loci are employed, namely, a yield locus with a corner, and a smooth yield locus. The yield locus with a corner leads to computational difficulties. For the smooth yield locus, results are found to be relatively insensitive to the shape of the yield locus, the location of the upper traction-free surface and the density specified on this surface. This insensitivity arises from the existence of asymptotic stress and density fields, to which the solution tends to converge on moving down the hopper. Numerical and approximate analytical solutions are obtained for these fields and the latter is used to derive an expression for the discharge velocity. This relation predicts discharge velocities to within 13% of the exact (numerical) values. While the assumption of incompressibility has been frequently used in the literature, it is shown here that in some cases, this leads to discharge velocities which are significantly higher than those obtained by the incorporation of density variation.
Resumo:
We consider the Fekete-Szego problem with real parameter lambda for the class Co(alpha) of concave univalent functions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
An explicit representation of an analytical solution to the problem of decay of a plane shock wave of arbitrary strength is proposed. The solution satisfies the basic equations exactly. The approximation lies in the (approximate) satisfaction of two of the Rankine-Hugoniot conditions. The error incurred is shown to be very small even for strong shocks. This solution analyses the interaction of a shock of arbitrary strength with a centred simple wave overtaking it, and describes a complete history of decay with a remarkable accuracy even for strong shocks. For a weak shock, the limiting law of motion obtained from the solution is shown to be in complete agreement with the Friedrichs theory. The propagation law of the non-uniform shock wave is determined, and the equations for shock and particle paths in the (x, t)-plane are obtained. The analytic solution presented here is uniformly valid for the entire flow field behind the decaying shock wave.