133 resultados para Shift-and
Resumo:
3C resonances of carbonyl and methyl groups in amides are shifted down-field on interaction with alkali and alkaline earth metal salts. The magnitude of the shift depends on the ionic potential of the cation. Ions like Li+ bind to the amide carbonyl group both in neat amide solutions as well as in concentrated salt solutions in water.
Resumo:
The benzylic methylene protons in a large number of benzyloxycarbonyl alpha-aminoisobutyric acid (Z-Aib) containing peptides, show chemical shift nonequivalence. The magnitude of the geminal nonequivalence is correlated with the involvement of the urethane carbonyl group, in an intramolecular hydrogen bond. Studies of the model compounds Z-Aib-Aib-Ala-NHMe, and Z-Aib-Aib-Aib-Pro-OMe clearly establish the presence of intramolecular hydrogen bonds, involving the urethane CO group. In both compounds marked anisochrony of the benzylic methylene protons is demonstrated. In Z-Aib-Aib-Pro-OMe, where a 4 leads to 1 hydrogen bonded beta-turn is not possible, the benzylic-CH2-protons appear as a singlet in CDCl3 and have a very small chemical shift difference in (CD3)2SO. The observation of such nonequivalence is of value in establishing whether the amino terminal Aib-Pro beta-turn is retained in large peptide-fragments of alamethicin.
Resumo:
Raffinose oligosaccharides (RO) are the major factors responsible for flatulence following ingestion of soybean-derived products. Removal of RO from seeds or soymilk would then have a positive impact on the acceptance of soy-based foods. In this study, alpha-galactosidase from Aspergillus oryzae was entrapped in gelatin using formaldehyde as the hardener. The immobilization yield was 64.3% under the optimum conditions of immobilization. The immobilized alpha-galactosidase showed a shift in optimum pH from 4.8 to 5.4 in acetate buffer. The optimum temperature also shifted from 50 degrees C to 57 degrees C compared with soluble enzyme. Immobilized alpha-galactosidase was used in batch, repeated batch and continuous mode to degrade RO present in soymilk. In the repeated batch, 45% reduction of RO was obtained in the fourth cycle. The performance of immobilized alpha-galactosidase was tested in a fluidized bed reactor at different flow rates and 86% reduction of RO in soymilk was obtained at 25 ml h(-1) flow rate. The study revealed that immobilized alpha-galactosidase in continuous mode is efficient in reduction of RO present in soymilk.
Resumo:
It has been reported by Pati et al. (J. Am. Chem. Soc. 2005, 127, 3496) that coordination with a transition metal can stabilize the “antiaromatic”, all-metal compound Al4Li4. Here, we report that it can also be stabilized by capping with a main group element like C and its isoelectronic species BH. Our calculations of binding energy, nuclear independent chemical shift, energy decomposition analysis, and molecular orbital analysis support the capping-induced stability, reduction of bond length alternation, and increase of aromaticity of these BH/C-capped Al4Li4 systems. The interaction between px and py orbitals of BH/C and the HOMO and LUMO of Al4Li4 is responsible for the stabilization. Our calculations suggest that capping can introduce fluxionality at room temperature.
Resumo:
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
Vibrational density of states (VDOS) in a supercooled polydisperse liquid is computed by diagonalizing the Hessian matrix evaluated at the potential energy minima for systems with different values of polydispersity. An increase in polydispersity leads to an increase in the relative population of localized high-frequency modes. At low frequencies, the density of states shows an excess compared to the Debye squared-frequency law, which has been identified with the boson peak. The height of the boson peak increases with polydispersity and shows a rather narrow sensitivity to changes in temperature. While the modes comprising the boson peak appear to be largely delocalized, there is a sharp drop in the participation ratio of the modes that exist just below the boson peak indicative of the quasilocalized nature of the low-frequency vibrations. Study of the difference spectrum at two different polydispersity reveals that the increase in the height of boson peak is due to a population shift from modes with frequencies above the maximum in the VDOS to that below the maximum, indicating an increase in the fraction of the unstable modes in the system. The latter is further supported by the facilitation of the observed dynamics by polydispersity. Since the strength of the liquid increases with polydispersity, the present result provides an evidence that the intensity of boson peak correlates positively with the strength of the liquid, as observed earlier in many experimental systems.
Resumo:
The structures of two crystal forms of Boc-Trp-Ile-Ala-Aib-Ile-Val-Aib-Leu-Aib-Pro-OMe have been determined. The triclinic form (P1, Z = 1) from DMSO/H2O crystallizes as a dihydrate (Karle, Sukumar & Balaram (1986) Proc, Natl, Acad. Sci. USA 83, 9284-9288). The monoclinic form (P2(1), Z = 2) crystallized from dioxane is anhydrous. The conformation of the peptide is essentially the same in both crystal system, but small changes in conformational angles are associated with a shift of the helix from a predominantly alpha-type to a predominantly 3(10)-type. The r.m.s. deviation of 33 atoms in the backbone and C beta positions of residues 2-8 is only 0.29 A between molecules in the two polymorphs. In both space groups, the helical molecules pack in a parallel fashion, rather than antiparallel. The only intermolecular hydrogen bonding is head-to-tail between helices. There are no lateral hydrogen bonds. In the P2(1) cell, a = 9.422(2) A, b = 36.392(11) A, c = 10.548(2) A, beta = 111.31(2) degrees and V = 3369.3 A for 2 molecules of C60H97N11O13 per cell.
Resumo:
We report the backbone chemical shift assignments of the acyl-acyl carrier protein (ACP) intermediates of the fatty acid biosynthesis pathway of Plasmodium falciparum. The acyl-ACP intermediates butyryl (C4), -octanoyl (C8), -decanoyl (C10), -dodecanoyl (C12) and -tetradecanoyl (C14)-ACPs display marked changes in backbone HN, Cα and Cβ chemical shifts as a result of acyl chain insertion into the hydrophobic core. Chemical shift changes cast light on the mechanism of expansion of the acyl carrier protein core.
Resumo:
We report the synthesis of Cd-substituted ZnO nanostructures (Zn1-xCdxO with x up to approximate to 0.09) by the high-pressure solution growth method. The synthesized nanostructures comprise nanocrystals that are both particles (similar to 10-15 nm) and rods which grow along the [002] direction as established by transmission electron microscope (TEM) and x-ray diffraction (XRD) analysis. Rietveld analysis of the XRD data shows a monotonic increase of the unit cell volume with the increase of Cd concentration. The optical absorption, as well as the photoluminescence (PL), shows a red shift on Cd substitution. The line width of the PL spectrum is related to the strain inhomogeneity and it peaks in the region where the CdO phase separates from the Zn1-xCdxO nanostructures. The time-resolved photoemission showed a long-lived (similar to 10 ns) component. We propose that the PL behaviour of the Zn1-xCdxO is dominated by strain in the sample with the red shift of the PL linked to the expansion of the unit cell volume on Cd substitution.
Resumo:
Binding of 13C-labeled N-acetylgalactosamine (13C-GalNAc) and N-trifluoroacetylgalactosamine (19F-GalNAc) to Artocarpus integrifolia agglutinin has been studied using 13C and 19F nuclear magnetic resonance spectroscopy, respectively. Binding of these saccharides resulted in broadening of the resonances, and no change in chemical shift was observed, suggesting that the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc experience a magnetically equivalent environment in the lectin combining site. The alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc were found to be in slow exchange between free and protein bound states. Binding of 13C-GalNAc was studied as a function of temperature. From the temperature dependence of the line broadening, the thermodynamic and kinetic parameters were evaluated. The association rate constants obtained for the alpha-anomers of 13C-GalNAc and 19F-GalNAc (k+1 = 1.01 x 10(5) M-1.s-1 and 0.698 x 10(5) M-1.s-1, respectively) are in close agreement with those obtained for the corresponding beta-anomers (k+1 = 0.95 x 10(5) M-1.s-1 and 0.65 x 10(5) M-1.s-1, respectively), suggesting that the two anomers bind to the lectin by a similar mechanism. In addition these values are several orders of magnitude slower than those obtained for diffusion controlled processes. The dissociation rate constants obtained are 49.9, 56.9, 42, and 43 s-1, respectively, for the alpha- and beta-anomers of 13C-GalNAc and 19F-GalNAc. A two-step mechanism has been proposed for the interaction of 13C-GalNAc and 19F-GalNAc with A. integrifolia lectin in view of the slow association rates and high activation entropies. The thermodynamic parameters obtained for the association and dissociation reactions suggest that the binding process is entropically favored and that there is a small enthalpic contribution.
Resumo:
The proton NMR spectral complexity arising due to severe overlap of peaks hampers their analyses in diverse situations, even by the application of two-dimensional experiments. The selective or complete removal of the couplings and retention of only the chemical shift interactions in indirect dimension aids in the simplification of the spectrum to a large extent with little investment of the instrument time. The present study provides precise enantiodiscrimination employing more anisotropic NMR parameters in the chiral liquid crystalline medium and differentiates the overlapped peaks of many organic molecules and peptides dissolved in isotropic solvents.
Resumo:
The water-gas shift (WGS) reaction was carried out in the presence of Pd and Pt substituted nanocrystalline ceria catalysts synthesized by solution combustion technique. The catalysts were characterized by powder XRD and XPS. The noble metals were found to be present in ionic form substituted for the cerium atoms. The catalysts showed highactivity for the WGS reaction with high conversions below 250 degrees C. The products of reaction were only carbon dioxide and hydrogen, and no hydrocarbons were observed even in trace quantities. The reactions were carried out with different amounts of noble metal ion substitution and 2% Pt substituted ceria was found to be the best catalyst. The various possible mechanisms for the reaction were proposed and tested for their consistency with experimental data. The dual site mechanism best described the kinetics of the reaction and the corresponding rate parameters were obtained.
Resumo:
The Raman spectrum of DMSO is recorded with a Hilger two-prism spectrograph andλ 4358 Å excitation. In addition to all the Raman lines reported earlier, six new lines at 898, 925, 1223, 1309, 2811 and 2871 cm.−1 are observed and tentative assignments are given. The influence of solvents (CCl4, CHCl3, CH3COOH) on the S=O bond is also studied. A shift from the liquid phase value,i.e., 1043 cm.−1 to 1054, 1052 and 1009 cm.−1 in the respective solvents is observed. The possibilities of association effects and hydrogen bonding are discussed.