173 resultados para Shear rates
Resumo:
We report the first synthesis of hyperbranched polyacetals via a melt transacetalization polymerization process. The process proceeds via the self-condensation of an AB(2) type monomer carrying a hydroxyl group and a dimethylacetal unit; the continuous removal of low boiling methanol drives the equilibrium toward polymer formation. Because of the susceptibility of the acetal linkage to hydrolysis, the polymer degrades readily under mildly acidic conditions to yield the corresponding hydroxyl aldehyde as the primary product. Furthermore, because of the unique topology of hyperbranched structures, the rate of polymer degradation was readily tuned by changing just the nature of the end-groups alone; instead of the dimethylacetal bearing monomer, longer chain dialkylacetals (dibutyl and dihexyl) monomers yielded hyperbranched polymers carrying longer alkyl groups at their molecular periphery. The highly branched topology and the relatively high volume fraction of the terminal alkyl groups resulted in a significant lowering of the ingress rates of the aqueous reagents to the loci of degradation, and consequently the degradation rates of the polymers were dramatically influenced by the hydrophobic nature of the terminal alkyl substituents. The simple synthesis and easy tunability of the degradation rates make these materials fairly attractive candidates for use as degradable scaffolds.
Resumo:
The growth and dissolution dynamics of nonequilibrium crystal size distributions (CSDs) can be determined by solving the governing population balance equations (PBEs) representing reversible addition or dissociation. New PBEs are considered that intrinsically incorporate growth dispersion and yield complete CSDs. We present two approaches to solving the PBEs, a moment method and a numerical scheme. The results of the numerical scheme agree with the moment technique, which can be solved exactly when powers on mass-dependent growth and dissolution rate coefficients are either zero or one. The numerical scheme is more general and can be applied when the powers of the rate coefficients are non-integers or greater than unity. The influence of the size dependent rates on the time variation of the CSDs indicates that as equilibrium is approached, the CSDs become narrow when the exponent on the growth rate is less than the exponent on the dissolution rate. If the exponent on the growth rate is greater than the exponent on the dissolution rate, then the polydispersity continues to broaden. The computation method applies for crystals large enough that interfacial stability issues, such as ripening, can be neglected. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.
Resumo:
Throughput analysis of bulk TCP downloads in cases where all WLAN stations are associated at the same rate with the AP is available in the literature. In this paper,we extend the analysis to TCP uploads for the case of multirate associations. The approach is based on a two-dimensional semi- Markov model for the number of backlogged stations. Analytical results are in excellent agreement with simulations performed using QUALNET 4.5.
Resumo:
The theory of phase formation is generalised for any arbitrary time dependence of nucleation and growth rates. Some sources of this time dependence are time-dependent potential inputs, ohmic drop and the ingestion effect. Particular cases, such as potentiostatic and, especially, linear potential sweep, are worked out for the two limiting cases of nucleation, namely instantaneous and progressive. The ohmic drop is discussed and a procedure for this correction is indicated. Recent results of Angerstein-Kozlowska, Conway and Klinger are critically investigated. Several earlier results are deduced as special cases. Evans' overlap formula is generalised for the time-dependent case and the equivalence between Avrami's and Evans' equations established.
Resumo:
This paper addresses the problem of maximum margin classification given the moments of class conditional densities and the false positive and false negative error rates. Using Chebyshev inequalities, the problem can be posed as a second order cone programming problem. The dual of the formulation leads to a geometric optimization problem, that of computing the distance between two ellipsoids, which is solved by an iterative algorithm. The formulation is extended to non-linear classifiers using kernel methods. The resultant classifiers are applied to the case of classification of unbalanced datasets with asymmetric costs for misclassification. Experimental results on benchmark datasets show the efficacy of the proposed method.
Resumo:
In this study, we analyse simultaneous measurements (at 50 Hz) of velocity at several heights and shear stress at the surface made during the Utah field campaign for the presence of ranges of scales, where distinct scale-to-scale interactions between velocity and shear stress can be identified. We find that our results are similar to those obtained in a previous study [Venugopal et al., 2003] (contrary to the claim in V2003, that the scaling relations might be dependent on Reynolds number) where wind tunnel measurements of velocity and shear stress were analysed. We use a wavelet-based scale-to-scale cross-correlation to detect three ranges of scales of interaction between velocity and shear stress, namely, (a) inertial subrange, where the correlation is negligible; (b) energy production range, where the correlation follows a logarithmic law; and (c) for scales larger than the boundary layer height, the correlation reaches a plateau.
Resumo:
The literature on pricing implicitly assumes an "infinite data" model, in which sources can sustain any data rate indefinitely. We assume a more realistic "finite data" model, in which sources occasionally run out of data; this leads to variable user data rates. Further, we assume that users have contracts with the service provider, specifying the rates at which they can inject traffic into the network. Our objective is to study how prices can be set such that a single link can be shared efficiently and fairly among users in a dynamically changing scenario where a subset of users occasionally has little data to send. User preferences are modelled by concave increasing utility functions. Further, we introduce two additional elements: a convex increasing disutility function and a convex increasing multiplicative congestion-penally function. The disutility function takes the shortfall (contracted rate minus present rate) as its argument, and essentially encourages users to send traffic at their contracted rates, while the congestion-penalty function discourages heavy users from sending excess data when the link is congested. We obtain simple necessary and sufficient conditions on prices for fair and efficient link sharing; moreover, we show that a single price for all users achieves this. We illustrate the ideas using a simple experiment.
Resumo:
Nanoindentation is applied to the two polymorphs of aspirin to examine and differentiate their interaction anisotropy and shear instability. Aspirin provides an excellent test system for the technique because: (i) polymorphs I and II exhibit structural similarity in two dimensions, thereby facilitating clear examination of the differences in mechanical response in relation to well-defined differences between the two crystal structures; (ii) single crystals of the metastable polymorph II have only recently become accessible; (iii) shear instability has been proposed for II. Different elastic moduli and hardness values determined for the two polymorphs are correlated with their crystal structures, and the interpretation is supported by measured thermal expansion coefficients. The stress-induced transformation of the metastable polymorph II to the stable polymorph I can be brought about rapidly by mechanical milling, and proceeds via a slip mechanism. This work establishes that nanoindentation provides ``signature'' responses for the two aspirin polymorphs, despite their very similar crystal structures. It also demonstrates the value of the technique to quantify stability relationships and phase transformations in molecular crystals, enabling a deeper understanding of polymorphism in the context of crystal engineering.
Resumo:
Bonding a fibre reinforced polymer (FRP) composite or metallic plate to the soffit of a reinforced concrete (RC), timber or metallic beam can significantly increase its strength and other aspects of structural performance. These hybrid beams are often found to fail due to premature debonding of the plate from the original beam in a brittle manner. This has led to the development of many analytical solutions over the last two decades to quantify the interfacial shear and normal stresses between the adherends. The adherends are subjected to axial, bending and shear deformations. However, most analytical solutions have neglected the influence of shear deformation of the adherends. For the few solutions which consider this effect in an approximate manner, their applicability is limited to one or two specific load cases. This paper presents a general analytical solution for the interfacial stresses in plated beams under an arbitrary loading with the shear deformation of the adherends duly considered. The shear stress distribution is assumed to be parabolic through the depth of the adherends in predicting the interfacial shear stress and Timoshenko's beam theory is adopted in predicting interfacial normal stress to account for the shear deformation. The solution is applicable to a beam of arbitrary prismatic cross-section bonded symmetrically or asymmetrically with a thin or thick plate, both having linear elastic material properties. The effect of shear deformation is illustrated through an example beam. The influence of material and geometric parameters of the adherends and adhesive on the interfacial stress concentrations at the plate end is discussed. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The relations for the growth and consumption rates of a layer with finite thickness as an end member and the product phases in the interdiffusion zone are developed. We have used two different methodologies, the diffusion based and the physico-chemical approach to develop the same relations. We have shown that the diffusion based approach is rather straightforward; however, the physico-chemical approach is much more versatile than the other method. It was found that the position of the marker plane becomes vague in the second stage of the interdiffusion process in pure A thin layer/B couple, where two phases grow simultaneously.