249 resultados para Self-reflexivity
Resumo:
A simple but self-consistent microscopic theory for the time dependent solvation energy of both ions and dipoles is presented which includes, for the first time, the details of the self-motion of the probe on its own solvation dynamics. The theory leads to several interesting predictions. The most important of them is that, for dipolar solvation, both the rotational and the translational motions of the dipolar solute probe can significantly accelerate the rate of solvation. In addition, the rotational self-motion of the solute can also give rise to an additional mechanism of nonexponentiality in solvation time correlation functions in otherwise slow liquids. A comparison between the present theoretical predictions and the recent experimental studies of Maroncelli et al. on solvation dynamics of aniline in l-propanol seems to indicate that the said experiments have missed the initial solvent response up to about 45 ps. After mapping the experimental results on the redefined time scale, the theoretical results can explain the experimental results for solvation of aniline in 1-propanol very well. For ionic solvation, the translational motion is significant for light solutes only. For example, for Li+ in water, translational motion speeds up the solvation by about 20%. The present theory demonstrates that in dipolar solvation the partial quenching of the self-motion due to the presence of specific solute-solvent interactions (such as H-bonding) may lead to a much slower solvation than that when the self-motion is present. This point has been discussed. In addition, we present the theoretical results for solvation of aniline in propylene carbonate, Here, the solvation is predicted to be complete within 15-20 ps.
Resumo:
The aerodynamics of the blast wave produced by laser ablation is studied using the piston analogy. The unsteady one-dimensional gasdynamic equations governing the flow an solved under assumption of self-similarity. The solutions are utilized to obtain analytical expressions for the velocity, density, pressure and temperature distributions. The results predict. all the experimentally observed features of the laser produced blast waves.
Resumo:
We set up the generalized Langevin equations describing coupled single-particle and collective motion in a suspension of interacting colloidal particles in a shear how and use these to show that the measured self-diffusion coefficients in these systems should be strongly dependent on shear rate epsilon. Three regimes are found: (i) an initial const+epsilon(.2), followed by (ii) a large regime of epsilon(.1/2) behavior, crossing over to an asymptotic power-law approach (iii) D-o - const x epsilon(.-1/2) to the Stokes-Einstein value D-o. The shear dependence is isotropic up to very large shear rates and increases with the interparticle interaction strength. Our results provide a straightforward explanation of recent experiments and simulations on sheared colloids.
Resumo:
We show that the substrate affects the interparticle spacing in monolayer arrays with hexagonal order formed by self-assembly of polymer grafted nanoparticles. Remarkably, arrays with square packing were formed due to convective shearing at a liquid surface induced by miscibility of colloidal solution with the substrate.
Resumo:
Nicotinate-N-oxide and isonicotinate-N-oxide have been employed to synthesize four heterometallic metallamacrocycles (dppf)(2)Pd-2(nicotinate-N-oxide)(2)](OTf)(2) (1), (dppf)(2)Pt-2(nicotinate-N-oxide)(2)](OTf)(2) (2), (dppf) 2Pd2(isonicotinate-N-oxide)(2)](OTf)(2) (3) and (dppf)(2)Pt-2(isonicotinate-N-oxide)(2)](OTf)(2) (4). The complexes represent the first examples of metallamacrocycles driven by solely Pd(II)/Pt(II)-O coordination using carboxylate-N-oxide donor. All the complexes 1-4 are characterized by IR, UV-Vis, multinuclear NMR spectroscopic and ESI-MS studies. The molecular structures of the complexes 1 and 3 are unambiguously determined by single crystal X-ray diffraction analysis. Despite the possibility of formation of several linkage isomers due to ambidentate nature of the donors, exclusive formation of 2 + 2] self-assembled single isomeric metallamacrocycle in each case is interesting observation. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Porous, large surface area, metastable zirconias, are of importance to catalytic, electrochemical, biological, and thermal insulation applications. Combustion synthesis is a very commonly used method for producing such zirconias. However, its rapid nature makes control difficult. A simple modification has been made to traditional solution combustion synthesis to address this problem. It involves the addition of starch to yield a starting mixture with a ``dough-like'' consistency. Just 5 wt% starch is seen to significantly alter the combustion characteristics of the ``dough.'' In particular, it helps to achieve better control over reaction zone temperature that is significantly lower than the one calculated by the adiabatic approximation typically used in self-propagating high-temperature synthesis. The effect of such control is demonstrated by the ability to tune dough composition to yield zirconias with different phase compositions from the relatively elusive ``amorphous'' to monoclinic (> 30 nm grain size) and tetragonal pure zirconia (< 30 nm grain size). The nature of this amorphous phase has been investigated using infrared spectroscopy. Starch content also helps tailor porosity in the final product. Zirconias with an average pore size of about 50 mu m and specific surface area as large as 110 m2/g have been obtained.
Resumo:
The reaction of n-BuSn(O)OH](n), and 9-hydroxy-9-fluorenecarboxylic acid in the presence of p-X-C6H4-OH (X = F, Br) afforded hydroxyl-rich hexameric organostannoxane prismanes. The crystal structures of these prismanes reveal guest-assisted supramolecular structures. Self-assembly of these compounds on a mica surface affords organooxotin nanotubules.
Resumo:
Six disaccharide amphiphiles were synthesized and their hydrogel-forming behavior was extensively studied. These amphiphiles were based on maltose and lactose. Since the gels formed from some of these systems showed the ability to "trap" water molecules upon gelation, these gels were described as "hydrogels". When these gels were heated to similar to 70 degrees C, the samples turned into clear, isotropic fluids, and upon gradual cooling, the hydrogels could be reproduced. Thus these systems were also "thermoreversible". The low molecular mass (MW 565) of the gelators compared to that of a typical polymeric gelator forming substance implies pronounced aggregation of the disaccharide amphiphiles into larger microstructures during gelation. To discern the aggregate textures and morphologies, the specimen hydrogel samples were examined by high-resolution scanning electron microscopy (SEM). A possible reason for the exceptionally high water gelating capacities (>6000 molecules of water per gelator molecule) exhibited by these N-alkyl disaccharide amphiphiles is the presence of large interlamellar spaces into which the water molecules get entrapped due to surface tension. In contrast to their single-chain counterparts, the double-chain lactosyl and maltosylamine amphiphiles upon solubilization in EtOH-H2O afforded hydrogels with reduced mechanical strengths. Interestingly, the corresponding microstructures were found to be quite different from the corresponding hydrogels of their single-chain counterparts. Rheological studies provided further insights into the behavior of these hydrogels. Varying the chain length of the alcohol cosolvent could modulate the gelation capacities, melting temperatures, and the mechanical properties of these hydrogels. To explain the possible reasons of gelation, the results of molecular modeling and energy minimization studies were also included.
Resumo:
Two new cadmium coordination polymers namely Cd(HAmTrz-COO)(4)(NH4+)(2)] 1; and Cd(HAmTrz)(2)I-2](n) 2; (HAmTrz-COOH = 3-amino-1,2,4-triazole-5-carboxylic acid), have been prepared based on HAmTrz-COOH as ligand. The crystal structures of 1 and 2 have been determined by single-crystal X-ray diffraction technique. In coordination-complex 1 four triazole ligands coordinate via N1 nitrogen leading to a tetrahedral geometry around cadmium ion, while in 2 the ligand prefers to coordinate to the metal in a bidentate bridging mode. The structures of both the coordination polymers can be envisaged as 3D hydrogen bonded networks. Thermogravimetric analysis shows that 2 is more stable than 1 owing to different coordination numbers of cadmium atoms. Photoluminescence properties of both the compounds have been investigated in the solid state. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Surface orientation of self-assembled molecular films of 2,9,6,23-tetraamino cobalt phthalocyanine on gold and silver is shown to determine the nature and the products of the electrocatalytic reduction of oxygen.
Resumo:
The formation of molecular films of 2,9,16,23-tetraamino metal phthalocyanines [TAM(II)Pc; M (II) = Co, Cu, and TAM(III)Pc; M = Fe] by spontaneous adsorption on gold and silver surfaces is described. The properties of these films have been investigated by cyclic voltammetry, impedance, and FT-Raman spectroscopy. The charge associated with Co(II) and Co(I) redox couple in voltammetric data leads to a coverage of (0.35+/-0.05) x 10(-10) mol cm(-2), suggesting that the tetraamino cobalt phthalocyanine is adsorbed as a monolayer with an almost complete coverage. The blocking behavior of the films toward oxygen and Fe(CN)(6)(3-/4-) redox couple have been followed by cyclic voltammetry and impedance measurements. This leads to an estimate of the coverage of about 85 % in the case of copper and the iron analogs. FT-Raman studies show characteristic bands around 236 cm(-1) revealing the interaction between the metal substrate and the nitrogen of the -NH2 group on the phthalocyanine molecules.
Crystallization of SrCO3 on a self-assembled monolayer substrate: an in-situ synchrotron X-ray study
Resumo:
Self-assembled monolayers (SAMs) of alkanethiols on gold surfaces show great promise in controlling the nucleation and growth of inorganic minerals from solution. In doing so, they mimic the role of some biogenic macromolecules in natural biomineralisation processes. Crystallization on SAM surfaces is usually monitored ex-situ; by allowing the process to commence and to evolve for some time, removing the substrate from the mother solution, and then examining it using microscopy, diffraction etc. We present here for the first time, the use of high energy monochromatic synchrotron X-radiation in conjunction with a two dimensional detector to monitor in situ, in a time resolved fashion, the growth of SrCO3 (strontianite) crystals on a SAM substrate.
Resumo:
1-Hydroxybenzotriazole spontaneously self-assembles to form hollow, linear microtubes initiated by controlled evaporation from water. The tube cavities act as thermo-labile micromoulds for the synthesis of linear gold microrods. Rhodamine 6G-labelled gold microrods, exhibiting surface enhanced resonance Raman activity, have been synthesized using the HOBT microtubes.