218 resultados para Scanning Electronic Mirror
Resumo:
The temperature variation in the insulation around an electronic component, mounted on a horizontal circuit board is studied numerically. The flow is assumed to be laminar and fully developed. The effect of mixed convection and two different types of insulation are considered. The mass, momentum and energy conservation equations in the fluid and conduction equation in the insulation are solved using the SIMPLER algorithm. Computations are carried out for liquid Freon and water, for different conductivity ratios, and different Rayleigh numbers. It is demonstrated that the temperature variation within the insulation becomes important when the thermal conductivity of the insulation is less than ten times the thermal conductivity of the cooling medium.
Resumo:
We observe a sharp feature in the ultra-low-temperature magnetoconductivity of degenerately doped Ge:Sb at H∼25 kOe, which is robust up to at least three times the critical density for the insulator-metal transition. This field corresponds to a low-energy scale characteristic of the special nature of antimony donors in germanium. Its presence and sensitivity to uniaxial stress confirm the notion of metallic impurity bands in doped germanium.
Resumo:
A study of the chain conformation in solutions of polyphenylacetylene and poly(2-octyne) has been performed. The two polymers differ in many ways : polyphenylacetylene gives a red solution while poly(2-octyne) is transparent and, a marked difference on the chain rigidity is observed : the statistical length are 45 Å and 135 Å respectively. From the study of these two systems, one deduces that curvature fluctuations play a minor role on the π electrons localization, and that the torsion between monomer units is the pertinent parameter to understand the chain conformation and the π electrons localization.
Resumo:
Differential scanning calorimetry (DSC) can be used for obtaining various non-isothermal properties of glassy materials. The thermal properties of the Si-As-Te glass system are discussed in relation to the interesting information obtained on the local ordering in these glasses.
Resumo:
The effect of the addition of p-aminophenol and aniline-based epoxy diluents on the curing behavior of highly viscous tetraglycidyl diamino diphenyl methane resin with diamino diphenyl sulfone hardener have been investigated kinetically by differential scanning calorimetry. Dynamic scans were carried out over a temperature range 30–300°C for different resin formulations. Isothermal scans at four differnt temperatures have also been carried out for the evaluation of kinetic parameters. Heat flow measurements at different heating rates have indicated the evidence of autocatalytic behavior of curing reaction following a simple nth-order kinetics.
Resumo:
We report the soft-X-ray absorption spectra at the oxygen K-edge of La1-xSrxCoO3-δ (x = 0.0, 0.1, 0.2, 0.3 and 0.4) series with experimentally determined δ values. We show that the doping of holes by replacing La3+ with Sr2+ induces states within the band gap of the insulating undoped compound for small x and these doped states have a very substantial oxygen 2p character. This indicates that the insulating compounds belong to the charge transfer insulator regime. With increasing Sr content, the doped states broaden into a band overlapping the top of the primarily oxygen p-derived band, leading to an insulator-metal transition at x ≥ 0.2.
Resumo:
Electronic absorption spectroscopy and fluorescence spectroscopy have been used to investigate the interaction of the fullerenes C60 and C70 with diethylaniline, and with aromatic solvents such as benzene. C60 interacts weakly with aromatic amines in the ground state while C70 does not interact at all. Steady state fluorescence emission and lifetime measurements show that both C60 and C70 form excited state complexes (exciplexes) with the amines in non-aromatic solvents such as methylcyclohexane, but not in benzene. In benzene, only fluorescence quenching is observed due to the interaction between the π systems of the aromatic solvent and the fullerene in the ground state. This is also borne out by the systematic study of solvent effects on the absorption and emission spectra of the fullerenes.
Resumo:
The electronic excitations and fluorescence of conjugated polymers are related to large or small alternation ? of the transfer integrals t(1 ± ?) along the backbone. The fluorescence of polysilanes (PSs) and poly (para-phenylenevinylene (PPV) is linked to large ?, which places the one-photon gap Eg below the lowest two-photon gap Ea and reduces distortions due to electron-phonon (e-p) coupling. In contrast to small ? not, vert, similar 0.1 in ?-conjugated polymers, such as polyacetylene (PA), para-conjugated phenyls lead to an extended ?-system with increased alternation, to states localized on each ring and to charge-transfer excitations between them. Surprisingly good agreement is found between semiempirical parametric method 3 (PM3) bond lengths and exact Pariser-Parr-Pople (PPP) ?-bond orders for trans-stilbene, where the PPV bipolarons are confined to two phenyls. Stilbene spectra are consistent with increased alternation and small e-p distortions.
Resumo:
We have investigated the electronic structure of well-characterized samples of La1-xSrxFeO3 (x=0.0�0.4) by x-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy, bremsstrahlung isochromat (BI) spectroscopy, and Auger electron spectroscopy. We find systematic behavior in the occupied and unoccupied density of states reflecting changes in the electronic structure on hole doping via Sr substitution as well as providing estimates for different interaction strengths. The spectral features, particularly of the unoccupied states obtained from BI spectra, indicate the probable reason for the absence of an insulator-metal transition in this series. Analysis of the Auger spectra provides the estimates of the on-site effective Coulomb interaction strengths in Fe 3d and O 2p states. The parameter values for the bare charge-transfer energy ? and the Fe 3d�O 2p hybridization strength t? for LaFeO3 are obtained from an analysis of the Fe 2p core-level XPS in terms of a model many-body calculation. We discuss the character of the ground state in LaFeO3 as well as the nature of the doped hole states in La1-xSrxFeO3, based on these parameter values.
Resumo:
NDDO-based (AM1) configuration interaction (CI) calculations have been used to calculate the wavelength and oscillator strengths of electronic absorptions in organic molecules and the results used in a sum-over-states treatment to calculate second-order-hyperpolarizabilities. The results for both spectra and hyperpolarizabilities are of acceptable quality as long as a suitable CI-expansion is used. We have found that using an active space of eight electrons in eight orbitals and including all single and pair-double excitations in the CI leads to results that agree well with experiment and that do not change significantly with increasing active space for most organic molecules. Calculated second-order hyperpolarizabilities using this type of CI within a sum-over-states calculation appear to be of useful accuracy.
Resumo:
We elucidate the relationship between effective mass and carrier concentration in an oxide semiconductor controlled by a double-doping mechanism. In this model oxide system, Sr1-xLaxTiO3-delta, we can tune the effective mass ranging from 6 to 20m(e) as a function of filling (carrier concentration) and the scattering mechanism, which are dependent on the chosen lanthanum-and oxygen-vacancy concentrations. The effective mass values were calculated from the Boltzmann transport equation using the measured transport properties of thin films of Sr1-xLaxTiO3-delta. We show that the effective mass decreases with carrier concentration in this large-band-gap, low-mobility oxide, and this behavior is contrary to the traditional high-mobility, small-effective-mass semiconductors.
Resumo:
CaSiO3:Eu3+ (1-5 mol%) red emitting phosphors have been synthesized by a low-temperature solution combustion method. The phosphors have been well characterized by powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and optical spectroscopy. PXRD patterns reveal monoclinic CaSiO3 phase can be obtained at 900 degrees C. The SEM micrographs show the crystallites with irregular shape, mostly angular. Upon 254 nm excitation, the phosphor show characteristic fluorescence D-5(0) -> F-7(J) (J = 0, 1, 2, 3, 4) of the Eu3+ ions. The electronic transition located at 614 nm corresponding to D-5(0) -> F-7(2) of Eu3+ ions, which is stronger than the magnetic dipole transition located at 593 nm corresponding to D-5(0) -> F-7(1) of Eu3+ ions. Different pathways involved in emission process have been studied. Concentration quenching has been observed for Eu3+ concentration >4 mol%. UV-visible absorption shows an intense band at 240 nm in undoped and 270 nm in Eu3+ doped CaSiO3 which is attributed to oxygen to silicon (O-Si) ligand-to-metal charge-transfer (LMCT) band in the SiO32- group. The optical energy band gap is widened with increase of Eu3+ ion dopant. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Gd2O3:Eu3+ (4 mol%) nanophosphor co-doped with Li+ ions have been synthesized by low-temperature solution combustion technique in a short time. Powder X-ray diffractometer (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), UV-VIS and photoluminescence (PL) techniques have been employed to characterize the synthesized nanoparticles. It is found that the lattice of Gd2O3:Eu3+ phosphor transforms from monoclinic to cubic as the Li+-ions are doped. Upon 254 nm excitation, the phosphor showed characteristic luminescence D-5(0) -> F-7(J) (J= 0-4) of the Eu3+ ions. The electronic transition located at 626 nm (D-5(0) -> F-7(2)) of Eu3+ ions was stronger than the magnetic dipole transition located at 595 nm (D-5(0) -> F-7(1)). Furthermore, the effects of the Li+ co-doping as well as calcinations temperature on the PL properties have been studied. The results show that incorporation of Li+ ions in Gd2O3:Eu3+ lattice could induce a remarkable improvement of their PL intensity. The emission intensity was observed to be enhanced four times than that of with out Li+-doped Gd2O3:Eu3+. (C) 2010 Elsevier B.V. All rights reserved,