208 resultados para Round and square balers


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Copper(II) complexes Cu(ph-tpy)(B)](ClO4) (1-3), where ph-tpy is (4'-phenyl)-2,2':6',2 `'-terpyridine and B is N,N-donor phenanthroline base, viz. 1,10-phenanthroline (phen, 1), dipyridoquinoxaline (dpq, 2), and dipyridophenazine (dppz, 3), were prepared and characterized from analytical and spectral data. Complex 1, characterized by X-ray crystallography, shows a distorted square-pyramidal (4 + 1) CuN5 coordination geometry having the tridentate ph-tpy ligand at the basal plane and bidentate phen bound to the axial-equatorial sites. The complexes display a d-d band near 650 nm in aqueous DMF. The complexes are avid binders to calf thymus DNA giving the binding order: 3 (dppz) > 2 (dpq) > 1 (phen). The dpq and dppz complexes show photo-induced DNA cleavage activity in red light via photo-redox pathway forming hydroxyl radicals. The cytotoxicity of the dppz complex 3 was studied by MTT assay in HeLa cancer cells. The IC50 values are 3.7 and 12.4 mu M in visible light of 400-700 nm and dark, respectively. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ground-state properties of the spin-(1/2 Heisenberg antiferromagnet on a square lattice are studied by using a simple variational wave function that interpolates continuously between the Néel state and short-range resonating-valence-bond states. Exact calculations of the variational energy for small systems show that the state with the lowest energy has long-range antiferromagnetic order. The staggered magnetization in this state is approximately 70% of its maximum possible value. The variational estimate of the ground-state energy is substantially lower than the value obtained for the nearest-neighbor resonating-valence-bond wave function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the influence of Fe excess on the electrical transport and magnetism of Fe1+yTe0.5Se0.5 (y=0.04 and 0.09) single crystals. Both compositions exhibit resistively determined superconducting transitions (T-c) with an onset temperature of about 15 K. From the width of the superconducting transition and the magnitude of the lower critical field H-c1, it is inferred that excess of Fe suppresses superconductivity. The linear and nonlinear responses of the ac susceptibility show that the superconducting state for these compositions is inhomogeneous. A possible origin of this phase separation is a magnetic coupling between Fe excess occupying interstitial sites in the chalcogen planes and those in the Fe-square lattice. The temperature derivative of the resistivity d(rho)/d(T) in the temperature range T-c < T < T-a with T-a being the temperature of a magnetic anomaly, changes from positive to negative with increasing Fe. A log 1/T divergence of the resistivity above T-c in the sample with higher amount of Fe suggests a disorder-driven electronic localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The infra-red spectra of a large number of ternary Cu(II) oxides with at least a quasi square-planar coordination of oxygen around the copper ions have been studied. The frequency of the bands with the highest frequency,v max, is found to correlate extremely well with the shortest Cu–O distance.v max increases at an impressive rate of sim20 cm–1 per 0.01 Å when the Cu–O distance becomes less than 1.97 Å, which is the Cu2+–O2– distance in square-planar CuO4 complexes as obtained from empirical ionic radii considerations. The marked sensitivity may be used as a ldquotitrationrdquo procedure not only to assign bands but also to obtain diagnostic information about local coordination in compounds derived, for example, from the YBa2Cu3O7–d structure such as LaCaBaCu3O7–d . The only example where this correlation fails is in the two-layer non-superconducting oxides derived from La2(Ca, Sr)Cu2O6. The significance of this result is discussed. The marked dependence of frequency on the bond-distance is qualitatively examined in terms of an increased electron-phonon coupling to account for the observed tendency of the superconducting transition temperature to go through a maximum as the average basal plane Cu–O distance is decreased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a variety of physical implications of a mean-field theory for spiral spin-density-wave states in the square-lattice Hubbard model for small deviations from half filling. The phase diagram with the paramagnetic metal, two spiral (semimetallic) states, and ferromagnet is calculated. The momentum distribution function and the (quasiparticle) density of states are discussed. There is a significant broadening of the quasiparticle bands when the antiferromagnetic insulator is doped. The evolution of the Fermi surface and the variation of the plasma frequency and a charge-stiffness constant with U/t and δ are calculated. The connection to results based on the Schwinger-boson-slave-fermion formalism is made.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Six metal complexes of Schiff bases involving Vitamin B6 and the decarboxylated amino acid histamine have been synthesised and characterized. Crystal structures have been determined for [CuL1(H2O)Br]-NO31(L1= pyridoxylidenehistamine) and [Cu2L22(NO3)2]·6H2O 2(L2= 5′-phosphopyridoxylidenehistaminate). The crystal structure of complex 1[space group P[1 with combining macron], a= 8.161(2), b= 10.368(2), c= 11.110(2)Å, α= 105.18(1), β= 102.12(1), γ= 72.10(1)° and Z= 2; R= 0.072, R′= 0.083] consists of square-pyramidally co-ordinated copper with the tridentate Schiff base in the zwitterionic form, whereas in 2[space group P[1 with combining macron], a= 8.727(1), b= 10.308(1), c= 12.845(2)Å, α= 110.00(1), β= 78.94(1), γ= 114.35(1)° and Z= 1; R= 0.035, R′= 0.034] the copper has the same co-ordination geometry but the tetradentate Schiff-base ligand exists as a monoanion. The conformational parameters deduced from such structures are important for understanding the stereochemical aspects of Vitamin B6-catalysed model reactions involving histidine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill-posed due to various reasons, and hence the parameters become non-unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non-linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one-dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm(3) cm(-3). It is found from the two experiments that mean and uncertainty in the saturated soil moisture (theta(s)) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In mediating endocytosis of extracellular macromolecules; the major mechanism in which cells ingest nutrients, degrade hormones and maintain the protein and lipid compositions of their organelle membrane, the cell surface receptors encounter 'coated pits', migrate continuously from one organelle to another, deliver the 'cargo' and often recycle back to the cell surface. This article is an attempt to give an account of the recent advances in our understanding of the molecular events involved in the 'round trip itinerary' of cell surface receptors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics (MD) studies have been carried out on the Hoogsteen hydrogen bonded parallel and the reverse Hoogsteen hydrogen banded antiparallel C.G*G triplexes. Earlier, the molecular mechanics studies had shown that the parallel structure was energetically more favourable than the antiparallel structure. To characterize the structural stability of the two triplexes and to investigate whether the antiparallel structure can transit to an energetically more favourable structure, due to the local fluctuations in the structure during the MD simulation, the two structures were subjected to 200ps of constant temperature vacuum MD simulations at 300K. Initially no constraints were applied to the structures and it was observed that for the antiparallel tripler, the structure showed a large root mean square deviation from the starting structure within the first 12ps and the N4-H41-O6 hydrogen bond in the WC duplex got distorted due to a high propeller twist and a moderate increase in the opening angle in the basepairs. Starting from an initial value of 30 degrees, helical twist of the average structure from this simulation had a value of 36 degrees, while the parallel structure stabilized at a twist of 33 degrees. In spite of the hydrogen bond distortions in the antiparallel tripler, it was energetically comparable to the parallel tripler. To examine the structural characteristics of an undistorted structure, another MD simulation was performed on the antiparallel tripler by constraining all the hydrogen bonds. This structure stabilized at an average twist of 33 degrees. In the course of the dynamics though the energy of the molecule - compared to the initial structure - improved, it did not become comparable to the parallel structure. Energy minimization studies performed in the presence of explicit water and counterions also showed the two structures to be equally favourable energetically Together these results indicate that the parallel C.G*G tripler with Hoogsteen hydrogen bonds also represents a stereochemically and energetically favourable structure for this class of triplexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of [Cu2(O2CMe)4(H2O)2] with N, N, N′, N′-tetramethylethane- 1,2-diamine (tmen) in ethanol yielded the dicopper(II) complex [Cu2(OH)(O2CMe)(tmen)2][ClO4]21. A similar reaction with N, N- dimethylethane- 1,2-diamine (dmen) afforded a crystalline product 2 in which two dicopper(II) complexes, [Cu2(OH)(O2CMe)(dmen)2][ClO4]22a and [Cu2(OH)(O2CMe)(H2O)2(dmen)2][ClO4]22b, are cocrystallized in a 1 : 1 molar ratio along with 2NaClO4. The crystal structures of 1 and 2 have been determined. The complexes have an asymmetrically dibridged [Cu2(µ-OH)(µ-O2CMe)]2+ core. The co-ordination geometry of the metal is square planar (CuO2N2). The copper atoms in 2b have a square-pyramidal CuO3N2 co-ordination sphere. The Cu Cu distances and Cu–O–Cu angles in 1, 2a and 2b are 3.339(2), 3.368(3), 3.395(7)Å, 120.1(2), 116.4(1) and 123.6(2)°, respectively. Complex 1 exhibits an axial ESR spectrum in a methanol glass giving g∥= 2.26 (A∥= 164 × 10–4 cm–1) and g⊥= 2.04. The ESR spectra obtained from the bulk material of the dmen product are indicative of the presence of two dimers, viz. complex 2a(g∥= 2.25, A∥= 165 × 10–4 cm–1; g⊥= 2.03) and 2b(g∥= 2.19, A∥= 184 × 10–4 cm–1; g⊥= 2.0). Variable-temperature magnetic susceptibility measurements on these complexes show an intramolecular antiferromagnetic coupling in the dimeric core. The fitting parameters are J=–27.8 cm–1, g= 2.1 for complex 1 and J=–10.1 cm–1, g= 2.0 for 2. The magnetostructural properties of the complexes are discussed. There is a linear correlation of the –2J values with the Cu Cu distances among dibridged complexes having square-planar copper(II) centres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present study was to examine the effect of hemiorchidectomy (HO) on serum FSH, LH, testosterone (T), and inhibin (INH) concentrations as well as on the testicular volume (TV) and on changes in the kinetics of germ cell turnovers in the remaining testis of adult male bonnet monkeys. Blood samples collected at 2200 h at various times before and after HO and testicular biopsies obtained at different periods were subjected to hormone analysis and DNA flow cytometry. Though serum T levels were lowered (p < 0.05) at 12 h after HO, T levels rapidly returned to intact control concentrations by Day 5. While serum LH remained unaltered, serum FSH increased markedly within 2 days of HO and remained significantly (p < 0.05) elevated over the next 90 days. Though serum INH showed a significant decrease (p < 0.05) by 15 min of HO, it returned to approximately 80% of intact levels within one week. The TV of the remaining testis showed maximal increment by Day 30 (p < 0.05) of HO. DNA flow cytometric analysis 24 days after HO showed increases (p < 0.05) in spermatogonia (2C) and primary spermatocytes (4C). These cell types by Day 45 had transformed to round (1C) and elongate (HC) (by 38%, p < 0.001) spermatids. Overall spermatogenesis (conversion of 2C to 1C and HC) showed significant enhancement at Days 110 and 175, suggesting that the spurt in spermatogenic activity is not confined to a single spermatogenic cycle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We obtain metal-insulator phase diagrams at half-filling for the five-band extended Hubbard model of the square-planar CuO2 lattice treated within a Hartree-Fock mean-field approximation, allowing for spiral spin-density waves. We indicate the existence of an insulating phase (covalent insulator) characterized by strong covalency effects, not identified in the earlier Zaanen-Sawatzky-Allen phase diagram. While the insulating phase is always antiferromagnetic, we also obtain an antiferromagnetic metallic phase for a certain range of interaction parameters. Performing a nonperturbative calculation of J(eff), the in-plane antiferromagnetic interaction is presented as a function of the parameters in the model. We also calculate the band gap and magnetic moments at various sites and discuss critically the contrasting interpretation of the electronic structure of high-T(c) materials arising from photoemission and neutron-scattering experiments.