123 resultados para Reflection high energy electron diffraction
Resumo:
Functionalized multiwalled carbon nanotubes (CNTs) are coated with a 4-5 nm thin layer of V(2)O(5) by controlled hydrolysis of vanadium alkoxide. The resulting V(2)O(5)/CNT composite has been investigated for electrochemical activity with lithium ion, and the capacity value shows both faradaic and capacitive (nonfaradaic) contributions. At high rate (1 C), the capacitive behavior dominates the intercalation as 2/3 of the overall capacity value out of 2700 C/g is capacitive, while the remaining is due to Li-ion intercalation. These numbers are in agreement with the Trasatti plots and are corroborated by X-ray photoelectron spectroscopy (XPS) studies on the V(2)O(5)/CNTs electrode, which show 85% of vanadium in the +4 oxidation state after the discharge at 1 C rate. The cumulative high-capacity value is attributed to the unique property of the nano V(2)O(5)/CNTs composite, which provides a short diffusion path for Lit-ions and an easy access to vanadium redox centers besides the high conductivity of CNTs. The composite architecture exhibits both high power density and high energy density, stressing the benefits of using carbon substrates to design high performance supercapacitor electrodes.
Resumo:
When radiation of sufficiently high energy is incident on the surface of a semiconductor photocathode, electrons are excited from the valence band to the conduction band and these may contribute to the photocurrent. The photocurrent in a single-layer cathode is found to be small, because of collisions within the cathode material, the electron affinity condition, etc. It is observed that when a thin layer of n-type cesium antimonide (Cs3Sb) is deposited over a p-type layer of sodium potassium antimonide (Na2KSb), there occurs a sharp rise in the photocurrent. The causes for the dramatic increase in the photocurrent obtainable from a sodium potassium antimonide cathode, by depositing a thin layer of cesium antimonide are analyzed in this article. It has been shown that the interface between sodium potassium antimonide and cesium antimonide can result in lowering of the electron affinity to a level below the bottom of the conduction band of sodium potassium antimonide. The drift field that arises at the heterointerface enables the electrons to reach the surface, leading to the emission of almost all the photogenerated electrons within the cathode. The processes involved in photoemission from such a double-layer cathode are examined from a theoretical point of view. The spectral response of the two-layer cathode is also found to be better than that of a single-layer cathode.
Resumo:
Radially-homogeneous and single-phase InAsxSb(1−x) crystals, up to 5.0 at. % As concentration, have been grown using the rotatory Bridgman method. Single crystallinity has been confirmed by x-ray and electron diffraction studies. Infrared transmission spectra show a continuous decrease in optical energy gap with the increase of arsenic content in InSb. The measured values of mobility and carrier density at room temperature (for x = .05) are 5.6×104 cm2/V s and 2.04×1016 cm−3, respectively.
Resumo:
This paper reports on our study of the edge of the 2/5 fractional quantum Hall state, which is more complicated than the edge of the 1/3 state because of the presence of edge sectors corresponding to different partitions of composite fermions in the lowest two Lambda levels. The addition of an electron at the edge is a nonperturbative process and it is not a priori obvious in what manner the added electron distributes itself over these sectors. We show, from a microscopic calculation, that when an electron is added at the edge of the ground state in the [N(1), N(2)] sector, where N(1) and N(2) are the numbers of composite fermions in the lowest two Lambda levels, the resulting state lies in either [N(1) + 1, N(2)] or [N(1), N(2) + 1] sectors; adding an electron at the edge is thus equivalent to adding a composite fermion at the edge. The coupling to other sectors of the form [N(1) + 1 + k, N(2) - k], k integer, is negligible in the asymptotically low-energy limit. This study also allows a detailed comparison with the two-boson model of the 2/5 edge. We compute the spectral weights and find that while the individual spectral weights are complicated and nonuniversal, their sum is consistent with an effective two-boson description of the 2/5 edge.
Resumo:
Electron diffraction and high-resolution electron microscopy have been employed to differentiate among icosahedral, decagonal and crystalline particles that occur in as-cast and rapidly solidified Al-Mn-Cu alloys. The resemblance between decagonal quasicrystals and crystals in their electron diffraction patterns is striking. The crystalline structure is based on the orthorhombic ‘Al3Mn’ structure, but also a new monoclinic phase called ‘X’ has been discovered and described here. The present observations are also closely related to the orthorhombic structures in Al60Mn11Ni4. The occurrence of fine-scale twinning and fragmentation into domains explains the complex diffraction effects.
Resumo:
Investigations were carried out on the ambient condition oxidation of self-assembled, fairly uniform indium nitride (InN) quantum dots (QDs) fabricated on p-Si substrates. Incorporation of oxygen in to the outer shell of the QDs was confirmed by the results of transmission electron microscopy (TEM), X-ray photoemission spectroscopy (XPS). As a consequence, a weak emission at high energy (similar to 1.03?eV) along with a free excitonic emission (0.8?eV) was observed in the photoluminescence spectrum. The present results confirm the incorporation of oxygen into the lattice of the outer shell of InN QDs, affecting their emission properties. (C) 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
We study the possibility of finger printing a strongly interacting W boson sector which is consistent with present day LHC searches at the ILC with longitudinal as well as transversely polarized electron and positron beams. We account for the final state interaction using a suitable Omnes formalism in terms of a plausible resonance description, and carry out thorough analyses of cross sections, asymmetries and angular distributions of the W's. We carry out a comparison with other extensions of the Standard Model, where heavy additional Z' bosons arise naturally. We also consider the effect of the strong final state interaction on a correlation that depends on (phi(-) -phi(+)),where the phi-(+) are the azimuthal angles of decay leptons, and find that it is a useful discriminant.
Resumo:
Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM). In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. doi:10.1063/1.3688083]
Resumo:
The synthesis of THF coordinated aluminium nanoparticles by the solvated metal atom dispersion (SMAD) method is described. These colloids are not stable with respect to precipitation of aluminium nanoparticles. The precipitated aluminium nanopowder is highly pyrophoric. Highly monodisperse colloidal aluminium nanoparticles (3.1 +/- 0.6 nm) stabilized by a capping agent, hexadecyl amine (HDA), have also been prepared by the SMAD method. They are stable towards precipitation of particles for more than a week. The Al-HDA nanoparticles are not as pyrophoric as the Al-THF samples. Particles synthesized in this manner were characterized by high-resolution electron microscopy and powder X-ray diffraction. Annealing of the Al-HDA nanoparticles resulted in carbonization of the capping agent on the surface of the particles which imparts air stability to them. Carbonization of the capping agent was established using Raman spectroscopy and TEM. The annealed aluminium nanoparticles were found to be stable even upon their exposure to air for over a month which was evident from the powder XRD, TGA/DSC, and TEM studies. The successful passivation was further confirmed with the determination of high active aluminium content (95 wt%) upon exposure and storage under air.
Resumo:
We discuss the possibility of using electroproduction of J/psi as a probe of gluon Sivers function by measuring single spin asymmetry (SSA) in experiments with transversely polarized protons and electron beams. We estimate SSA for JLab, HERMES, COMPASS, and eRHIC energies using the color evaporation model of charmonium production and find asymmetry up to 25% for certain choices of model parameters which have been used earlier for estimating SSA in the SIDIS and Drell-Yan processes.
Resumo:
Clustered architecture processors are preferred for embedded systems because centralized register file architectures scale poorly in terms of clock rate, chip area, and power consumption. Although clustering helps by improving the clock speed, reducing the energy consumption of the logic, and making the design simpler, it introduces extra overheads by way of inter-cluster communication. This communication happens over long global wires having high load capacitance which leads to delay in execution and significantly high energy consumption. Inter-cluster communication also introduces many short idle cycles, thereby significantly increasing the overall leakage energy consumption in the functional units. The trend towards miniaturization of devices (and associated reduction in threshold voltage) makes energy consumption in interconnects and functional units even worse, and limits the usability of clustered architectures in smaller technologies. However, technological advancements now permit the design of interconnects and functional units with varying performance and power modes. In this paper, we propose scheduling algorithms that aggregate the scheduling slack of instructions and communication slack of data values to exploit the low-power modes of functional units and interconnects. Finally, we present a synergistic combination of these algorithms that simultaneously saves energy in functional units and interconnects to improves the usability of clustered architectures by achieving better overall energy-performance trade-offs. Even with conservative estimates of the contribution of the functional units and interconnects to the overall processor energy consumption, the proposed combined scheme obtains on average 8% and 10% improvement in overall energy-delay product with 3.5% and 2% performance degradation for a 2-clustered and a 4-clustered machine, respectively. We present a detailed experimental evaluation of the proposed schemes. Our test bed uses the Trimaran compiler infrastructure. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or ``sequence conservation'' as the basis for their understanding. Recently ``interaction energy'' based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the ``interaction conservation'' viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.
Resumo:
We study electronic transport across a helical edge state exposed to a uniform magnetic ((B) over right arrow) field over a finite length. We show that this system exhibits Fabry-Perot-type resonances in electronic transport. The intrinsic spin anisotropy of the helical edge states allows us to tune these resonances by changing the direction of the (B) over right arrow field while keeping its magnitude constant. This is in sharp contrast to the case of nonhelical one-dimensional electron gases with a parabolic dispersion, where similar resonances do appear in individual spin channels (up arrow and down arrow) separately which, however, cannot be tuned by merely changing the direction of the (B) over right arrow field. These resonances provide a unique way to probe the helical nature of the theory. We study the robustness of these resonances against a possible static impurity in the channel.
Resumo:
A simple, rapid, and surfactant-free synthesis of crystalline copper nanostructures has been carried out through microwave irradiation of a solution of copper acetylacetonate in benzyl alcohol. The structures are found to be stable against oxidation in ambient air for several months. High-resolution electron microscopy (SEM and TEM) reveals that the copper samples comprise nanospheres measuring about 150 nm in diameter, each made of copper nanocrystals similar to 7 nm in extension. The nanocrystals are densely packed into spherical aggregates, the driving force being minimization of surface area and surface energy, and are thus immune to oxidation in ambient air. Such aggregates can also be adherently supported on SiO2 and Al2O3 when these substrates are immersed in the irradiated solution. The air-stable copper nanostructures exhibit surface enhanced Raman scattering, as evidenced by the detection of 4-mercaptobenzoic acid at 10(-6) M concentrations.