379 resultados para RETINAL NERVE FIBER LAYER
Resumo:
The thermal degradation behavior of banana fiber and polypropylene/banana fiber composites has been studied by thermogravimetric analysis. Banana fiber was found to be decomposing in two stages, first one around 320 degrees C and the second one around 450 degrees C. For chemically treated banana fiber, the decomposition process has been at a higher temperature, indicating thermal stability for the treated fiber. Activation energies for thermal degradation were estimated using Coats and Redfern method. Calorific value of the banana fiber was measured using a constant volume isothermal bomb calorimeter. rystallization studies exhibited an increase in the crystallization temperature and crystallinity of polypropylene upon the addition of banana fiber. POLYM. COMPOS., 31:1113-1123, 2010. (C) 2009 Society of Plastics Engineers.
Resumo:
In this study, we report a novel approach for glucose-triggered anticancer drug delivery from the self-assembly of neutral poly(vinyln alcohol) (PVA) and chitosan. In the present study, we have fabricated multilayer thin film of PVA-borate and chitosan on colloidal particle (MF particle) and monitored the layer-by-layer growth using Zetapotential measurements. Formation of multilayer membrane on MF particle has been further characterized with transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). Subsequently,disintegration of multilayer thin film and microcapsules was observed in presence of glucose. We investigated the disassembly of PVA-borate and chitosan self-assembly under CLSM and atomic force microscopy. These results suggest that this multilayer thin film is very efficient for encapsulation and release of DOX molecules above certain concentration of glucose (25 mM). This glucose-sensitive self-assembly is relevant for the application of anticancer therapeutic drug delivery.
Resumo:
In this paper, the steady laminar viscous hypersonic flow of an electrically conducting fluid in the region of the stagnation point of an insulating blunt body in the presence of a radial magnetic field is studied by similarity solution approach, taking into account the variation of the product of density and viscosity across the boundary layer. The two coupled non-linear ordinary differential equations are solved simultaneously using Runge-Kutta-Gill method. It has been found that the effect of the variation of the product of density and viscosity on skin friction coefficient and Nusselt number is appreciable. The skin friction coefficient increases but Nusselt number decreases as the magnetic field or the total enthalpy at the wall increases
Resumo:
A quartic profile in terms of the normal distance from the wall has been taken and coefficients are evaluated by satisfying one more boundary condition on the wall than the usual one. By doing so, the limitations about the Reynolds number of the quartic profile adopted by Lew (1949) has been removed. The Kármán (1921) Momentum Integral Equation has been used to evaluate the various characteristics of the flow. A comparative study of Lew's quartic profile and exponential profile together with the quartic profile of the present paper has been undertaken and the graphs for the various characteristics of the flow for a number of Mach numbers and suction coefficients have been drawn. At the end, certain conclusions of general nature about the velocity profiles have been recorded.
Resumo:
In this paper we have discussed the boundary layer on a plate with suction. The problem is solved near the leading edge as well as far downstream. A linear suction law is assumed near the leading edge for simplicity, whereas no restriction is placed on the suction law in the region downstream. An explict expression for boundary layer thickness in terms of suction speed and distance from leading edge is derived. It is found that the thickness of the boundary layer depends on the derivative of the suction speed. The skin friction also has been evaluated. Though near the leading edge a linear law of suction is assumed, the method used in the paper can be easily generalised for any other power law, for example, we may use a power series expansion for the function defining the suction velocity.
Resumo:
Tlie sclxuntion and clraractcrization of vitamins Al and An nnd related compoundsby reversed-pllasc paper cliromatogrnpl~y as well as ly thin-lqxr chromategraphy have hen rcportccl carlicrl * $. Thin-lnycr chromatography has also been used for the separatinn and charncterizatio11 of carotenoids from natural sourccs3~ ‘1. I-Iowcver, 130tr.rc,1~1~ofib scrvccl that carotenoid misturcs cannot be separated on a sin& aclsorhnt with ;1 sin& solvent. The scparntion and clctermi1wtion of carotenoid alclclydes from plants, microorganisms and animnl tissues have lxxn carriecl out by nicans of thin-layer clirf.~li~ato~apI~~U. Apocarotcnals awl apocarotcnoic acid have been detected in ornnges by the same technique’*
Resumo:
Surface topography has been known to play an important role in the friction and transfer layer formation during sliding. In the present investigation, EN8 steel flats were ground to attain different surface roughness with unidirectional grinding marks. Pure Mg pins were scratched on these surfaces using an Inclined Scratch Tester to study the influence of directionality of surface grinding marks on coefficient of friction and transfer layer formation. Grinding angle (i.e., the angle between direction of scratch and grinding marks) was varied between 0 degrees and 90 degrees during the tests. Experiments were conducted under both dry and lubricated conditions. Scanning electron micrographs of the contact surfaces of pins and flats were used to reveal the surface features that included the morphology of the transfer layer. It was observed that the average coefficient of friction and transfer layer formation depend primarily on the directionality of the grinding marks but were independent of surface roughness on the harder mating surface. In addition, a stick-slip phenomenon was observed, the amplitude of which depended both on the directionality of grinding marks and the surface roughness of the harder mating surface. The grinding angle effect on the coefficient of friction, which consists of adhesion and plowing components, was attributed to the variation of plowing component of friction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Dry sliding wear behavior of die-cast ADC12 aluminum alloy composites reinforced with short alumina fibers were investigated by using a pin-on-disk wear tester. The Al2O3 fibers were 4 mu m in diameter and were present in volume fractions (T-f)ranging from 0.03 to 0.26, The length of the fiber varied from 40 to 200 mu m. Disks of aluminum-alumina composites were rubbed against a pin of nitrided stainless steel SUS440B with a load of 10 N at a sliding velocity of 0.1 m/s. The unreinforced ADC 12 aluminum alloy and their composites containing low volume fractions of alumina (V-f approximate to 0.05) showed a sliding-distance-dependent transition from severe to mild wear. However, composites containing high volume fractions of alumina ( V-f > 0.05) exhibited only mild wear for all sliding distances. The duration of occurrence of the severe wear regime and the wear rate both decrease with increasing volume fraction. In MMCs the wear rate in the mild wear regime decreases with increase in volume fraction: reaching a minimum value at V-f = 0.09 Beyond V-f = 0.09 the wear rate increasesmarginally. On the other hand, the wear rate of the counterface (steel pin) was found to increase moderately with increase in V-f. From the analysis of wear data and detailed examination of (a) worn surfaces, (b) their cross-sections and (c) wear debris, two modes of wear mechanisms have been identified to be operative, in these materials and these are: (i) adhesive wear in the case of unreinforced matrix material and in MMCs with low Vf and (ii) abrasive wear in the case of MMCs with high V-f. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
In this paper we demonstrate experimentally a magnetic field sensor using a fiber Bragg grating. The shift in the Bragg condition as a result of strain applied on the fiber mounted on a nickel base by the magnetic field gives an indirect measure of the field. The proposed method overcomes the need for long fiber lengths required in methods such as Faraday effect sensors.
Resumo:
Friction influences the nature of transfer layer formed at the interface between tool and metal during sliding. In the present investigation, experiments were conducted using “Inclined Scratch Tester” to understand the effect of surface texture of hard surfaces on coefficient of friction and transfer layer formation. EN8 steel flats were ground to attain surfaces of different textures with different roughness. Then super purity aluminium pins were scratched against the prepared steel flats. Scanning electron micrographs of the contact surfaces of pins and flats were used to reveal the morphology of transfer layer. It was observed that the coefficient of friction and the formation of transfer layer depend primarily on the texture of hard surfaces, but independent of surface roughness of hard surfaces. It was observed that on surfaces that promote plane strain conditions near the surface, the transfer of material takes place due to the plowing action of the asperities. But, on a surface that promotes plane stress conditions the transfer layer was more due to the adhesion component of friction. It was observed that the adhesion component increases for surfaces that have random texture but was constant for the other surfaces