130 resultados para QUANTIZED WEYL ALGEBRA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An attempt is made to study the two dimensional (2D) effective electron mass (EEM) in quantum wells (Qws), inversion layers (ILs) and NIPI superlattices of Kane type semiconductors in the presence of strong external photoexcitation on the basis of a newly formulated electron dispersion laws within the framework of k.p. formalism. It has been found, taking InAs and InSb as examples, that the EEM in Qws, ILs and superlattices increases with increasing concentration, light intensity and wavelength of the incident light waves, respectively and the numerical magnitudes in each case is band structure dependent. The EEM in ILs is quantum number dependent exhibiting quantum jumps for specified values of the surface electric field and in NIPI superlattices; the same is the function of Fermi energy and the subband index characterizing such 2D structures. The appearance of the humps of the respective curves is due to the redistribution of the electrons among the quantized energy levels when the quantum numbers corresponding to the highest occupied level changes from one fixed value to the others. Although the EEM varies in various manners with all the variables as evident from all the curves, the rates of variations totally depend on the specific dispersion relation of the particular 2D structure. Under certain limiting conditions, all the results as derived in this paper get transformed into well known formulas of the EEM and the electron statistics in the absence of external photo-excitation and thus confirming the compatibility test. The results of this paper find three applications in the field of microstructures. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this note, we show that a quasi-free Hilbert module R defined over the polydisk algebra with kernel function k(z,w) admits a unique minimal dilation (actually an isometric co-extension) to the Hardy module over the polydisk if and only if S (-1)(z, w)k(z, w) is a positive kernel function, where S(z,w) is the Szego kernel for the polydisk. Moreover, we establish the equivalence of such a factorization of the kernel function and a positivity condition, defined using the hereditary functional calculus, which was introduced earlier by Athavale [8] and Ambrozie, Englis and Muller [2]. An explicit realization of the dilation space is given along with the isometric embedding of the module R in it. The proof works for a wider class of Hilbert modules in which the Hardy module is replaced by more general quasi-free Hilbert modules such as the classical spaces on the polydisk or the unit ball in a'', (m) . Some consequences of this more general result are then explored in the case of several natural function algebras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this article we study bases for projective monomial curves and the relationship between the basis and the set of generators for the defining ideal of the curve. We understand this relationship best for curves in P-3 and for curves defined by an arithmetic progression. We are able to prove that the latter are set theoretic complete intersections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hilbert C*-module valued coherent states was introduced earlier by Ali, Bhattacharyya and Shyam Roy. We consider the case when the underlying C*-algebra is a W*-algebra. The construction is similar with a substantial gain. The associated reproducing kernel is now algebra valued, rather than taking values in the space of bounded linear operators between two C*-algebras.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we study constrained maximum entropy and minimum divergence optimization problems, in the cases where integer valued sufficient statistics exists, using tools from computational commutative algebra. We show that the estimation of parametric statistical models in this case can be transformed to solving a system of polynomial equations. We give an implicit description of maximum entropy models by embedding them in algebraic varieties for which we give a Grobner basis method to compute it. In the cases of minimum KL-divergence models we show that implicitization preserves specialization of prior distribution. This result leads us to a Grobner basis method to embed minimum KL-divergence models in algebraic varieties. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dilaton action in 3 + 1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional conformal field theories. We find that in even dimensions, by promoting the cutoff to a field, one can get an action for this field which coincides with the Wess-Zumino action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce the defect sequence for a contractive tuple of Hilbert space operators and investigate its properties. The defect sequence is a sequence of numbers, called defect dimensions associated with a contractive tuple. We show that there are upper bounds for the defect dimensions. The tuples for which these upper bounds are obtained, are called maximal contractive tuples. The upper bounds are different in the non-commutative and in the commutative case. We show that the creation operators on the full Fock space and the coordinate multipliers on the Drury-Arveson space are maximal. We also study pure tuples and see how the defect dimensions play a role in their irreducibility. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a cooperative system with an amplify-and-forward relay, the cascaded channel training protocol enables the destination to estimate the source-destination channel gain and the product of the source-relay (SR) and relay-destination (RD) channel gains using only two pilot transmissions from the source. Notably, the destination does not require a separate estimate of the SR channel. We develop a new expression for the symbol error probability (SEP) of AF relaying when imperfect channel state information (CSI) is acquired using the above training protocol. A tight SEP upper bound is also derived; it shows that full diversity is achieved, albeit at a high signal-to-noise ratio (SNR). Our analysis uses fewer simplifying assumptions, and leads to expressions that are accurate even at low SNRs and are different from those in the literature. For instance, it does not approximate the estimate of the product of SR and RD channel gains by the product of the estimates of the SR and RD channel gains. We show that cascaded channel estimation often outperforms a channel estimation protocol that incurs a greater training overhead by forwarding a quantized estimate of the SR channel gain to the destination. The extent of pilot power boosting, if allowed, that is required to improve performance is also quantified.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We construct and study classical solutions in Chern-Simons supergravity based on the superalgebra sl(N vertical bar N = 1). The algebra for the N = 3 case is written down explicitly using the fact that it arises as the global part of the super conformal W-3 superalgebra. For this case we construct new classical solutions and study their supersymmetry. Using the algebra we write down the Killing spinor equations and explicitly construct the Killing spinor for conical defects and black holes in this theory. We show that for the general sl(N|N - 1) theory the condition for the periodicity of the Killing spinor can be written in terms of the products of the odd roots of the super algebra and the eigenvalues of the holonomy matrix of the background. Thus the supersymmetry of a given background can be stated in terms of gauge invariant and well defined physical observables of the Chern-Simons theory. We then show that for N >= 4, the sl(N|N - 1) theory admits smooth supersymmetric conical defects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let I be an m-primary ideal of a Noetherian local ring (R, m) of positive dimension. The coefficient e(1)(I) of the Hilbert polynomial of an I-admissible filtration I is called the Chern number of I. A formula for the Chern number has been derived involving the Euler characteristic of subcomplexes of a Koszul complex. Specific formulas for the Chern number have been given in local rings of dimension at most two. These have been used to provide new and unified proofs of several results about e(1)(I).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a quantum system, there may be many density matrices associated with a state on an algebra of observables. For each density matrix, one can compute its entropy. These are, in general, different. Therefore, one reaches the remarkable possibility that there may be many entropies for a given state R. Sorkin (private communication)]. This ambiguity in entropy can often be traced to a gauge symmetry emergent from the nontrivial topological character of the configuration space of the underlying system. It can also happen in finite-dimensional matrix models. In the present work, we discuss this entropy ambiguity and its consequences for an ethylene molecule. This is a very simple and well-known system, where these notions can be put to tests. Of particular interest in this discussion is the fact that the change of the density matrix with the corresponding entropy increase drives the system towards the maximally disordered state with maximum entropy, where Boltzman's formula applies. Besides its intrinsic conceptual interest, the simplicity of this model can serve as an introduction to a similar discussion of systems such as colored monopoles and the breaking of color symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Birkhoff-James orthogonality is a generalization of Hilbert space orthogonality to Banach spaces. We investigate this notion of orthogonality when the Banach space has more structures. We start by doing so for the Banach space of square matrices moving gradually to all bounded operators on any Hilbert space, then to an arbitrary C*-algebra and finally a Hilbert C*-module.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study black hole solutions in Chern-Simons higher spin supergravity based on the superalgebra sl(3 vertical bar 2). These black hole solutions have a U(1) gauge field and a spin 2 hair in addition to the spin 3 hair. These additional fields correspond to the R-symmetry charges of the supergroup sl(3 vertical bar 2). Using the relation between the bulk field equations and the Ward identities of a CFT with N = 2 super-W-3 symmetry, we identify the bulk charges and chemical potentials with those of the boundary CFT. From these identifications we see that a suitable set of variables to study this black hole is in terms of the charges present in three decoupled bosonic sub-algebras of the N = 2 super-W-3 algebra. The entropy and the partition function of these R-charged black holes are then evaluated in terms of the charges of the bulk theory as well as in terms of its chemical potentials. We then compute the partition function in the dual CFT and find exact agreement with the bulk partition function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The design of modulation schemes for the physical layer network-coded two-way relaying scenario is considered with a protocol which employs two phases: multiple access (MA) phase and broadcast (BC) phase. It was observed by Koike-Akino et al. that adaptively changing the network coding map used at the relay according to the channel conditions greatly reduces the impact of MA interference which occurs at the relay during the MA phase and all these network coding maps should satisfy a requirement called the exclusive law. We show that every network coding map that satisfies the exclusive law is representable by a Latin Square and conversely, that this relationship can be used to get the network coding maps satisfying the exclusive law. The channel fade states for which the minimum distance of the effective constellation at the relay become zero are referred to as the singular fade states. For M - PSK modulation (M any power of 2), it is shown that there are (M-2/4 - M/2 + 1) M singular fade states. Also, it is shown that the constraints which the network coding maps should satisfy so that the harmful effects of the singular fade states are removed, can be viewed equivalently as partially filled Latin Squares (PFLS). The problem of finding all the required maps is reduced to finding a small set of maps for M - PSK constellations (any power of 2), obtained by the completion of PFLS. Even though the completability of M x M PFLS using M symbols is an open problem, specific cases where such a completion is always possible are identified and explicit construction procedures are provided. Having obtained the network coding maps, the set of all possible channel realizations (the complex plane) is quantized into a finite number of regions, with a specific network coding map chosen in a particular region. It is shown that the complex plane can be partitioned into two regions: a region in which any network coding map which satisfies the exclusive law gives the same best performance and a region in which the choice of the network coding map affects the performance. The quantization thus obtained analytically, leads to the same as the one obtained using computer search for M = 4-PSK signal set by Koike-Akino et al., when specialized for Simulation results show that the proposed scheme performs better than the conventional exclusive-OR (XOR) network coding and in some cases outperforms the scheme proposed by Koike-Akino et al.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The von Neumann entropy of a generic quantum state is not unique unless the state can be uniquely decomposed as a sum of extremal or pure states. As pointed out to us by Sorkin, this happens if the GNS representation (of the algebra of observables in some quantum state) is reducible, and some representations in the decomposition occur with non-trivial degeneracy. This non-unique entropy can occur at zero temperature. We will argue elsewhere in detail that the degeneracies in the GNS representation can be interpreted as an emergent broken gauge symmetry, and play an important role in the analysis of emergent entropy due to non-Abelian anomalies. Finally, we establish the analogue of an H-theorem for this entropy by showing that its evolution is Markovian, determined by a stochastic matrix.