93 resultados para Potassium levels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aside of size and shape, the strain induced by the mismatch of lattice parameters between core and shell in the nanocrystalline regime is an additional degree of freedom to engineer the electron energy levels. Herein, CdS/ZnS core/shell nanocrystals (NCs) with shell thickness up to four monolayers are studied. As a manifestation of strain, the low temperature radiative lifetime measurements indicate a reduction in Stokes shift from 36 meV for CdS to 5 meV for CdS/ZnS with four monolayers of overcoating. Concomitant crossover of S- and P-symmetric hole levels is observed which can be understood in the framework of theoretical calculations predicting flipping the hierarchy of ground hole state by the strain in CdS NCs. Furthermore, a nonmonotonic variation of higher energy levels in strained CdS NCs is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Reverse iontophoresis (RI) is one of the potential techniques used to monitor the concentration of various analytes in body fluids non -invasively. Transdermal extraction of potassium is investigated using RI. In the present work, the effect of potassium on stratum corneum (SC) during RI, feasibility of RI for continuous monitoring of potassium, and use of potassium as internal standard in RI, are investigated. Methods: Tape stripping experiment is carried out to find potassium concentration in SC. RI is carried out continuously for 180 min without passive diffusion and after passive diffusion for 60 min. Skin impedance measurements are done at 20 Hz and 20 kHz. Results: Potassium is found to be in the range 300-650 nmol/cm(2) on SC by tape stripping experiment. Correlation coefficient between blood potassium and extracted potassium through RI after passive diffusion (R-2 = 0.5870) is more than without passive diffusion (R-2 = 0.5117). The skin impedance measurement shows that RI has more effect on SC than superficial layer of SC during RI. Conclusion: The present investigations conclude that it is possible to monitor potassium continuously through RI and using potassium as internal standard in RI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal pyramidal neurons express an intraneuronal map of spectral tuning mediated by hyperpolarization-activated cyclic-nucleotide-gated nonspecific-cation channels. Modeling studies have predicted a critical regulatory role for A-type potassium (KA) channels towards augmenting functional robustness of this map. To test this, we performed patch-clamp recordings from soma and dendrites of rat hippocampal pyramidal neurons, and measured spectral tuning before and after blocking KA channels using two structurally distinct pharmacological agents. Consistent with computational predictions, we found that blocking KA channels resulted in a significant reduction in resonance frequency and significant increases in input resistance, impedance amplitude and action-potential firing frequency across the somato-apical trunk. Furthermore, across all measured locations, blocking KA channels enhanced temporal summation of postsynaptic potentials and critically altered the impedance phase profile, resulting in a significant reduction in total inductive phase. Finally, pair-wise correlations between intraneuronal percentage changes (after blocking KA channels) in different measurements were mostly weak, suggesting differential regulation of different physiological properties by KA channels. Our results unveil a pivotal role for fast transient channels in regulating theta-frequency spectral tuning and intrinsic phase response, and suggest that degeneracy with reference to several coexisting functional maps is mediated by cross-channel interactions across the active dendritic arbor.