164 resultados para Particle size.
Resumo:
Nanoparticle synthesis in a microemulsion route is typically controlled by changing the water to surfactant ratio, concentration of precursors, and/or concentration of micelles. The experiments carried out in this work with chloroauric acid and hydrazine hydrate as precursors in water/AOT-Brij30/isooctane microemulsions show that the reagent addition rate can also be used to tune the size of stable spherical gold nanoparticles to some extent. The particle size goes through a minimum with variation in feed addition rate. The increase in particle size with an increase in reaction temperature is in agreement with an earlier report. A population balance model is used to interpret the experimental findings. The reduced extent of nucleation at low feed addition rates and suppression of nucleation due to the finite rate of mixing at higher addition rates produce a minimum in particle size. The increase in particle size at higher reaction temperatures is explained through an increase in fusion efficiency of micelles which dissipates supersaturation; increase in solubility is shown to play an insignificant role. The moderate polydispersity of the synthesized particles is due to the continued nucleation and growth of particles. The polydispersity of micelle sizes by itself plays a minor role.
Resumo:
Nanostructured materials have attracted considerable interest in recent years due to their properties which differ strongly from their bulk phase and potential applications in nanoscale electronic and optoelectronic devices. Metal oxide nanostructures can be synthesized by variety of different synthesis techniques developed in recent years such as thermal decomposition, sol-gel technique, chemical coprecipitation, hydrothermal process, solvothermal process, spray pyrolysis, polyol process etc. All the above processes go through a tedious synthesis procedure followed by prolonged heat treatment at elevated temperature and are time consuming. In the present work we describe a rapid microwave irradiation-assisted chemical synthesis technique for the growth of nanoparticles, nanorods, and nanotubes of a variety of metal oxides in the presence of an appropriate surfactant, without the use of any templates The method is simple, inexpensive, and helps one to prepare nanostructures in a very simple way, and in a very short time, measured in minutes. The synthesis procedure employs high quality metalorganic complexes (typically -diketonates) featuring a direct metal-to-oxygen bond in its molecular structure. The complex is dissolved in a suitable solvent, often with a surfactant added, and the solution then subjected to microwave irradiation in a domestic microwave oven operating at 2.45 GHz frequency with power varying from 160-800 W, from a few seconds to a few minutes, leading to the formation of corresponding metal oxides. This method has been used successfully to synthesize nanostructures of a variety of binary and ternary metal oxides such as ZnO, CdO, Fe2O3, CuO, Ga2O3, Gd2O3, ZnFe2O4, etc. There is an observed variation in the morphology of the nanostructures with the change of different parameters such as microwave power, irradiation time, appropriate solvent, surfactant type and concentration. Cationic, anionic, nonionic and polymeric surfactants have been used to generate a variety of nanostructures. Even so, to remove the surfactant, there is either no need of heat treatment or a very brief exposure to heat suffices, to yield highly pure and crystalline oxide materials as prepared. By adducting the metal complexes, the shape of the nanostructures can be controlled further. In this manner, very well formed, single-crystalline, hexagonal nanorods and nanotubes of ZnO have been formed. Adducting the zinc complex leads to the formation of tapered ZnO nanorods with a very fine tip, suitable for electron emission applications. Particle size and their monodispersity can be controlled by a suitable choice of a precursor complex, the surfactant, and its concentration. The resulting metal oxide nanostructures have been characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, photoluminescence, and electron emission measurements.
Resumo:
Nanocrystalline tin oxide powder was prepared using a solution precipitation technique after adding the surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT). Powders were characterized using X-ray diffraction (XRD), surface area (BET) and transmission electron microscopy (TEM). The gas sensitivity for surfactant added powders increased for liquid petroleum gas (LPG) as well as compressed natural gas (CNG), due to the decreased particle size and the increased surface area. The LPG gas sensitivity increased several times using phosphorus treated surfactant AOT.
Resumo:
Fly ash and silica fume are two pozzolans that have been widely used for improved concrete strength and durability. Silica fume displays a greater pozzolanic reactivity than fly ash primarily due to its finer particle size. The reactivity of fly ash can be improved by reducing its particle size distribution. This paper discusses the fresh and hardened properties of concrete made with an ultra-fine fly ash (UFFA) produced by air classification. Durability testing for chloride diffusivity, rapid chloride permeability, alkali-silica reaction (ASR), and sulfate attack was also conducted It was found that at a given workability and water content, concrete containing UFFA could be produced with only 50% of the high-range water-reducer dosage required for comparable silica fume concrete. Similar early strengths and durability measures as silica fume concrete were observed when a slightly higher dosage of UFFA was used with a small reduction (10%) in water content.
Resumo:
For the successful performance of a granular filter medium, existing design guidelines, which are based on the particle size distribution (PSD) characteristics of the base soil and filter medium, require two contradictory conditions to be satisfied, viz., soil retention and permeability. In spite of the wider applicability of these guidelines, it is well recognized that (i) they are applicable to a particular range of soils tested in the laboratory, (ii) the design procedures do not include performance-based selection criteria, and (iii) there are no means to establish the sensitivity of the important variables influencing performance. In the present work, analytical solutions are developed to obtain a factor of safety with respect to soil-retention and permeability criteria for a base soil - filter medium system subjected to a soil boiling condition. The proposed analytical solutions take into consideration relevant geotechnical properties such as void ratio, permeability, dry unit weight, effective friction angle, shape and size of soil particles, seepage discharge, and existing hydraulic gradient. The solution is validated through example applications and experimental results, and it is established that it can be used successfully in the selection as well as design of granular filters and can be applied to all types of base soils.
Resumo:
Poly(acrylic acid-co-sodium acrylate-co-acrylamide) superabsorbent polymers (SAPs) cross-linked with ethylene glycol dimethacrylate (EGDMA) were synthesized by inverse suspension polymerization. The SAPs were swollen in DI water, and it was found that the equilibrium swelling capacities varied with the acrylamide content. The SAPs were subjected to reversible swelling/deswelling cycles in DI water and aqueous NaCl solution, respectively. The effect of the addition of an electrolyte on the swelling of the SAP was explored. The equilibrium swelling capacity of the SAPs was found to decrease with increasing concentration of added electrolyte in the swelling medium. The effect of the particle size of the dry SAPs on the swelling properties was also investigated. A first order model was used to describe the kinetics of swelling/deswelling, and the equilibrium swelling capacity, limiting swelling capacity, and swelling/deswelling rate coefficients were determined.
Resumo:
The efficiency of track foundation material gradually decreases due to insufficient lateral confinement, ballast fouling, and loss of shear strength of the subsurface soil under cyclic loading. This paper presents characterization of rail track subsurface to identify ballast fouling and subsurface layers shear wave velocity using seismic survey. Seismic surface wave method of multi-channel analysis of surface wave (MASW) has been carried out in the model track and field track for finding out shear wave velocity of the clean and fouled ballast and track subsurface. The shear wave velocity (SWV) of fouled ballast increases with increase in fouling percentage, and reaches a maximum value and then decreases. This character is similar to typical compaction curve of soil, which is used to define optimum and critical fouling percentage (OFP and CFP). Critical fouling percentage of 15 % is noticed for Coal fouled ballast and 25 % is noticed for clayey sand fouled ballast. Coal fouled ballast reaches the OFP and CFP before clayey sand fouled ballast. Fouling of ballast reduces voids in ballast and there by decreases the drainage. Combined plot of permeability and SWV with percentage of fouling shows that after critical fouling point drainage condition of fouled ballast goes below acceptable limit. Shear wave velocities are measured in the selected location in the Wollongong field track by carrying out similar seismic survey. In-situ samples were collected and degrees of fouling were measured. Field SWV values are more than that of the model track SWV values for the same degree of fouling, which might be due to sleeper's confinement. This article also highlights the ballast gradation widely followed in different countries and presents the comparison of Indian ballast gradation with international gradation standards. Indian ballast contains a coarser particle size when compared to other countries. The upper limit of Indian gradation curve matches with lower limit of ballast gradation curves of America and Australia. The ballast gradation followed by Indian railways is poorly graded and more favorable for the drainage conditions. Indian ballast engineering needs extensive research to improve presents track conditions.
Resumo:
Spherical shaped ZnO nanopowders (14-50 nm) were synthesized by a low temperature solution combustion method in a short time <5 min. Rietveld analysis show that ZnO has hexagonal wurtzite structure with lattice constants a = 3.2511(1) angstrom, c = 5.2076(2) angstrom, unit cell volume (V) = 47.66(5) (angstrom)(3) and belongs to space group P63mc. SEM micrographs reveal that the particles are spherical in shape and the powders contained several voids and pores. TEM results also confirm spherical shape, with average particle size of 14-50 nm. The values are consistent with the grain sizes measured from Scherrer's method and Williamson-Hall (W-H) plots. A broad UV-vis absorption spectrum was observed at similar to 375 nm which is a characteristic band for the wurtzite hexagonal pure ZnO. The optical energy band gap of 3.24 eV was observed for nanopowder which is slightly lower than that of the bulk ZnO (3.37 eV). The observed Raman peaks at 438 and 588 cm(-1) were attributed to the E(2) (high) and E(1) (LO) modes respectively. The broad band at 564 cm(-1) is due to disorder-activated Raman scattering for the A(1) mode. These bands are associated with the first-order Raman active modes of the ZnO phase. The weak bands observed in the range 750-1000 cm(-1) are due to small defects. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated the synthesis of light-sensitive polyelectrolyte capsules (PECs) by utilizing a novel polyol reduction method and investigated its applicability as photosensitive drug delivery vehicle. The nanostructured capsules were prepared via layer by layer (LbL) assembly of poly(allylamine hydrochloride) (PAN) and dextran sulfate (DS) on silica particles followed by in-situ synthesis of silver nanoparticles (NPs). Capsules without silver NPs were permeable to low molecular weight (A(w), 479 g/mol) rhodamine but impermeable to higher molecular weight fluorescence labeled dextran (FITC-dextran). However, capsules synthesized with silver NPs showed porous morphology and were permeable to higher molecular weight (M(w) 70 kDa) FITC-dextran also. These capsules were loaded with FITC-dextran using thermal encapsulation method by exploiting temperature induced shrinking of the capsules. During heat treatment the porous morphology of the capsules transformed into smooth pore free structure which prevents the movement of dextran into bulk during the loading process. When these loaded capsules are exposed to laser pulses, the capsule wall ruptured, resulting in the release of the loaded drug/dye. The rupture of the capsules was dependent on particle size, laser pulse energy and exposure time. The release was linear with time when pulse energy of 400 mu J was used and burst release was observed when pulse energy increased to 600 mu J.
Resumo:
It has been experimentally established that nickel and cobalt can be extracted from their ferrites with sodium sulphate melt containing femc ions. The kinetics of extraction from synthetic ferrites using a melt of sodium and ferric sulphates of eutectic composition has been studied as a function of the particle size of the ferrite and temperature in the range 900 to 1073 K. The divalent ions in the ferrite exchange with the ferric ion in the melt, leaving a residue of hematite.The rate of reaction conforms to the Crank-Ginstling-Brounshtein diffusion model. The reaction rate is governed by the counter-diffusion of ~ e an~d ~+i ' +(or co2+) ions in the hematite lattice. Analytical expressions for the rate constants have been derived from the experimental data as a function of particle size and temperature. The activation energy for the extraction of nickel from nickel ferrite is 154(+10) kJ mol-' and the corresponding value for cobalt is 142(+10)kJ mol;'. In sulphation roasting of minerals containing nickel, the yield of nickel is generally limited to 75% due to the formation of insoluble ferrites. The use of melts based on sodium sulphate provides a possible route for enhancing the recovery of nickel to approximately 98%.
Resumo:
A new structured discretization of 2D space, named X-discretization, is proposed to solve bivariate population balance equations using the framework of minimal internal consistency of discretization of Chakraborty and Kumar [2007, A new framework for solution of multidimensional population balance equations. Chem. Eng. Sci. 62, 4112-4125] for breakup and aggregation of particles. The 2D space of particle constituents (internal attributes) is discretized into bins by using arbitrarily spaced constant composition radial lines and constant mass lines of slope -1. The quadrilaterals are triangulated by using straight lines pointing towards the mean composition line. The monotonicity of the new discretization makes is quite easy to implement, like a rectangular grid but with significantly reduced numerical dispersion. We use the new discretization of space to automate the expansion and contraction of the computational domain for the aggregation process, corresponding to the formation of larger particles and the disappearance of smaller particles by adding and removing the constant mass lines at the boundaries. The results show that the predictions of particle size distribution on fixed X-grid are in better agreement with the analytical solution than those obtained with the earlier techniques. The simulations carried out with expansion and/or contraction of the computational domain as population evolves show that the proposed strategy of evolving the computational domain with the aggregation process brings down the computational effort quite substantially; larger the extent of evolution, greater is the reduction in computational effort. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A finite element method for solving multidimensional population balance systems is proposed where the balance of fluid velocity, temperature and solute partial density is considered as a two-dimensional system and the balance of particle size distribution as a three-dimensional one. The method is based on a dimensional splitting into physical space and internal property variables. In addition, the operator splitting allows to decouple the equations for temperature, solute partial density and particle size distribution. Further, a nodal point based parallel finite element algorithm for multi-dimensional population balance systems is presented. The method is applied to study a crystallization process assuming, for simplicity, a size independent growth rate and neglecting agglomeration and breakage of particles. Simulations for different wall temperatures are performed to show the effect of cooling on the crystal growth. Although the method is described in detail only for the case of d=2 space and s=1 internal property variables it has the potential to be extendable to d+s variables, d=2, 3 and s >= 1. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We study the effect of acoustic streaming on nanoparticle motion and morphological evolution inside an acoustically levitated droplet using an analytical approach coupled with experiments. Nanoparticle migration due to internal recirculation forms a density stratification, the location of which depends on initial particle concentration. The time scale of density stratification is similar to that of perikinetic-driven agglomeration of particle flocculation. The density stratification ultimately leads to force imbalance leading to a unique bowl-shaped structure. Our analysis shows the mechanism of bowl formation and how it is affected by particle size, concentration, internal recirculation and fluid viscosity.
Resumo:
The interaction of guar gum with the hydrophobic solids namely talc, mica and graphite has been investigated through adsorption, electrokinetic and flotation experiments. The adsorption densities of guar gum onto the above hydrophobic minerals show that they are more or less independent of pH. The adsorption isotherms of guar gum onto talc, mica and graphite indicate that the adsorption densities increase with increase in guar gum concentration and all the isotherms follow the as L1 type according to Giles classification. The magnitude of the adsorption density of guar gum onto the above minerals may be arranged in the following sequence: talc > graphite > mica The effect of particle size on the adsorption density of guar gum onto these minerals has indicated that higher adsorption takes place in the coarser size fraction, consequent to an increase in the surface face-to-edge ratio. In the case of the talc and mica samples pretreated with EDTA and the leached graphite sample, a decrease in the adsorption density of guar gum is observed, due to a reduction in the metallic adsorption sites. The adsorption densities of guar gum increase with decrease in sample weight for all the three minerals. Electrokinetic measurements have indicated that the isoelectric points (iep) of these minerals lie between pH 2-3, Addition of guar gum decreases the negative electrophoretic mobility values in proportion to the guar gum concentration without any observable shift in the iep values, resembling the influence of an indifferent electrolyte. The flotation recovery is diminished in the presence of guar gum for all the three minerals, The magnitude of depression follows the same sequence as observed in the adsorption studies. The floatability of EDTA treated talc and mica samples as well as the leached graphite sample is enhanced, complementing the adsorption data, Possible mechanisms of interaction between the hydrophobic minerals and guar gum are discussed.
Resumo:
Densification characteristics of amorphous ZrO2-40 mol% Al2O3 powder with 3 to 15 mu m nominal particle size range, produced by spray pyrolysis, have been studied by conducting hot pressing experiments at 573, 723 and 873 K with uniaxial pressures of 250, 500 and 750 MPa. Most of the increase in relative density from the starting value of similar to 40% occurred during loading up to the desired pressure. The increments in density during 1 hour constant pressure dwells were less than 4% at all temperatures and pressure. Inter-particle bonding was not observed at 573 K. Correlation between the results with a viscous sintering model for hot pressing is not satisfactory for describing the behavior as normal viscous sintering.