102 resultados para POLYMERIZATION CATALYSTS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The RecA filament formed on double-stranded (ds) DNA is proposed to be a functional state analogous to that generated during the process of DNA strand exchange. RecA polymerization and de-polymerization on dsDNA is governed by multiple physiological factors. However, a comprehensive understanding of how these factors regulate the processes of polymerization and de-polymerization of RecA filament on dsDNA is still evolving. Here, we investigate the effects of temperature, pH, tensile force, and DNA ends (in particular ssDNA overhang) on the polymerization and de-polymerization dynamics of the E. coli RecA filament at a single-molecule level. Our results identified the optimal conditions that permitted spontaneous RecA nucleation and polymerization, as well as conditions that could maintain the stability of a preformed RecA filament. Further examination at a nano-meter spatial resolution, by stretching short DNA constructs, revealed a striking dynamic RecA polymerization and de-polymerization induced saw-tooth pattern in DNA extension fluctuation. In addition, we show that RecA does not polymerize on S-DNA, a recently identified novel base-paired elongated DNA structure that was previously proposed to be a possible binding substrate for RecA. Overall, our studies have helped to resolve several previous single-molecule studies that reported contradictory and inconsistent results on RecA nucleation, polymerization and stability. Furthermore, our findings also provide insights into the regulatory mechanisms of RecA filament formation and stability in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chiral 2-pyridylsulfinamides were shown to be effective catalysts in the alkylation of aryl and alkyl aldehydes with diethylzinc providing the corresponding alcohols in excellent enantioselectivity. Sulfinamide catalysts possessing solitary chirality at the sulfur center produced the product phenethyl alcohol in good enantioselectivity. Diastereomeric sulfinamides possessing chirality at the carbon-bearing nitrogen and at the sulfur of the sulfinamide increased the enantioselectivity of the product alcohols up to >99%. However, there is no effect of the match-mismatch pair of sulfinamide diastereomers on the outcome of the chiral induction of the product phenethyl alcohols. It was conclusively proved that chirality at the sulfur center is mandatory for obtaining good enantioselectivity in the reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Review article discusses dendritic organometallic catalysis, originating from catalytic moieties present at the peripheries of a dendrimer. The presence of multiple catalytic moieties at the dendrimer peripheries leads to a positive effect in majority of the homogeneous and heterogeneous catalysis, although a negative or a marginal improvement in the catalytic effect with respect to the corresponding monomeric catalyst were also encountered. A number of recent examples that attempt to rationalize the origin of the dendrimer effect in catalysis are discussed. Further a tabular survey is provided by categorizing the dendritic catalysts and their influence on catalysis. Recent studies on the multivalent dendritic catalysts, wherein varied number of catalytic moieties is installed within a given generation, are utilized to emphasize the role of clustering catalytic moieties at the peripheries of the dendrimers in influencing the catalysis. (C) 2013 Elsevier B. V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple hydrothermal synthesis of highly reproducible carbon nanoparticles in a size range between 2 and 7 nmfroma single precursor sucrose without either surface passivating agents or acids and bases. The carbon nanoparticles can be used as white light phosphors, especially for ultraviolet light emitting diodes and metal-free catalyst for the reduction of nitrophenol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Curcumin, derived from rhizomes of the Curcuma longa plant, is known to possess a wide range of medicinal properties. We have examined the interaction of curcumin with actin and determined their binding and thermodynamic parameters using isothermal titration calorimetry. Curcumin is weakly fluorescent in aqueous solution, and binding to actin enhances fluorescence several fold with a large blue shift in the emission maximum. Curcumin inhibits microfilament formation, which is similar to its role in inhibiting microtubule formation. We synthesized a series of stable curcumin analogues to examine their affinity for actin and their ability to inhibit actin self-assembly. Results show that curcumin is a ligand with two symmetrical halves, each of which possesses no activity individually. Oxazole, pyrazole, and acetyl derivatives are less effective than curcumin at inhibiting actin self-assembly, whereas a benzylidiene derivative is more effective. Cell biology studies suggest that disorganization of the actin network leads to destabilization of filaments in the presence of curcumin. Molecular docking reveals that curcumin binds close to the cytochalasin binding site of actin. Further molecular dynamics studies reveal a possible allosteric effect in which curcumin binding at the barbed end of actin is transmitted to the pointed end, where conformational changes disrupt interactions with the adjacent actin monomer to interrupt filament formation. Finally, the recognition and binding of actin by curcumin is yet another example of its unique ability to target multiple receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we demonstrate an uninterrupted galvanic replacement reaction (GRR) for the synthesis of metallic (Ag, Cu and Sn) and bimetallic (Cu M, M=Ag, Au, Pt and Pd) sponges/dendrites by sacrificing the low reduction potential metals (Mg in our case) in acidic medium. The acidic medium prevents the oxide formation on Mg surface and facilitates the uninterrupted reaction. The morphology of dendritic/spongy structures is controlled by the volume of acid used for this reaction. The growth mechanism of the spongy/dendritic microstructures is explained by diffusion-limited aggregate model (DLA), which is also largely affected by the volume of acid. The significance of this method is that the yield can be easily predicted, which is a major challenge for the commercialization of the products. Furthermore, the synthesis is complete in 1-2 minutes at room temperature. We show that the sponges/dendrites efficiently act as catalysts to reduce 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) using NaBH4-a widely studied conversion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In last 40 years, CeO2 has been found to play a major role in the area of auto exhaust catalysis due to its unique redox properties. Catalytic activity is enhanced when CeO2 is added to the noble metals supported Al2O3 catalysts. Reason for increase in catalytic activity is due to higher dispersion of noble metals in the form of ions in CeO2. This has led to the idea of substitution of noble metal ions in CeO2 lattice acting as adsorption sites instead of nanocrystalline noble metal particles on CeO2. In this article, a brief review of synthesis, structure and catalytic properties of noble metal ions dispersed on CeO2 resulting in noble metal ionic catalysts (NMIC) like Ce1-xMxO2-delta, Ce1-x-yTixMyO2-delta, Ce1-x-yZrxMyO2-delta, Ce1-x-ySnxMyO2-delta and Ce1-x-yFexMyO2-delta (M = Pt, Pd, Rh and Ru) are presented. Substitution of Ti, Zr, Sn and Fe in CeO2 increases oxygen storage capacities (OSC) due to structural distortion, whereas dispersion of noble metal ions in Ti, Zr, Sn and Fe substituted CeO2 supports increase both OSC and catalytic activities. Electronic interaction between noble metal ions and CeO2 in NMICs responsible for higher OSC and higher catalytic activities is discussed. (C) 2015 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two shape-persistent covalent cages (CC1(r) and CC2(r)) have been devised from triphenyl amine-based trialdehydes and cyclohexane diamine building blocks utilizing the dynamic imine chemistry followed by imine bond reduction. The cage compounds have been characterized by several spectroscopic techniques which suggest that CC1(r) and CC2(r) are 2+3] and 8+12] self-assembled architectures, respectively. These state-of-the-art molecules have a porous interior and stable aromatic backbone with multiple palladium binding sites to engineer the controlled synthesis and stabilization of ultrafine palladium nanoparticles (PdNPs). As-synthesized cage-embedded PdNPs have been characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and powder X-ray diffraction (PXRD). Inductively coupled plasma optical emission spectrometry reveals that Pd@CC1(r) and Pd@CC2(r) have 40 and 25 wt% palladium loading, respectively. On the basis of TEM analysis, it has been estimated that as small as similar to 1.8 nm PdNPs could be stabilized inside the CC1(r), while larger CC2(r) could stabilize similar to 3.7 nm NPs. In contrast, reduction of palladium salts in the absence of the cages form structure less agglomerates. The well-dispersed cage-embedded NPs exhibit efficient catalytic performance in the cyanation of aryl halides under heterogeneous, additive-free condition. Moreover, these materials have excellent stability and recyclability without any agglomeration of PdNPs after several cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a unique, single source precursor Prussian blue (iron(III) ferrocyanide (Fe-4(III)Fe-II(CN)(6)](3))) for the synthesis of Fe/Fe3C nanoparticle encapsulated N-doped graphitic layers and bamboo-like graphitic nanotubes. Hollow N-doped graphite (N-HG) nanostructures are obtained when the encapsulated nanostructures are treated with an acid. Both the encapsulated nanostructures and N-HG are shown to be applicable as bi-functional electrocatalysts for oxygen reduction (ORR) and oxygen evolution reactions (OER). The ORR activity is shown to be improved for N-HG and is comparable to commercial Pt/C. On the other hand, encapsulated nanostructures exhibit OER activity with long-term stability comparable to commercial RuO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a facile synthesis of three-dimensional (3D) nanodendrites of Pd nanoparticles (NPs) and nitrogen-doped carbon NPs (N-CNPs) by electroless deposition of Pd2+ ions. N-CNPs being an electron-enriched material act as a reducing agent. Moreover, the availability of a variety of nitrogen species in N-CNPs promotes the open arm structure as well as stabilizes the oriented 3D assembly of primary Pd NPs. The dendrites exhibit superior catalytic activity for methanol (0.5 M) oxidation in alkaline media (1 M NaOH) which is ascribed to the large electrochemical active surface area and the enhanced mass activity with repeated use. Further mass activity improvement has been realized after acid-treatment of dendrites which is attributed to the increment in the -OH group. The dendrites show higher mass activity (J(f) similar to 653 A g(-1)) in comparison with a commercial Pt-carbon/Pd-carbon (Pt-C/Pd-C) catalyst (J(f) similar to 46 and 163 A g(-1), respectively), better operational stability, superior CO tolerance with I-f/I-b (similar to 3.7) over a commercial Pt-C/Pd-C catalyst (I-f/I-b similar to 1.6 and 1.75, respectively) and may serve as a promising alternative to commercial Pt-C catalysts for anode application in alkaline fuel cells. To ensure the adaptability of our 3D-nanodendrites for other catalytic activities, we studied 4-nitrophenol reduction at room temperature. The 3D-nanodendrites show excellent catalytic activity toward 4-nitrophenol reduction, as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combustion synthesized (CS) cobalt catalysts deposited over two supports, alumina and silica doped alumina (SDA), were characterized and tested for its Fischer-Tropsch (FT) activity. The properties of CS catalysts were compared to catalysts synthesized by conventional impregnation method (IWI). The CS catalysts resulted in 40-70% increase in the yield of C6+ hydrocarbons compared to MI catalysts. The FT activity for CS catalysts showed formation of long chain hydrocarbon waxes (C24+) compared to the formation of middle distillates (C-10-C-20) for IWI synthesized catalysts, indicating higher hydrocarbon chain growth probability for CS catalysts. This is ascribed to the smaller crystallite sizes, increased degree of cobalt reduction and consequentially, a higher number of active metal sites, exposed over the catalyst surface. Additionally, 12-13% increase in the overall C6+ hydrocarbon yield is realized for SDA-CS catalysts, compared to Al2O3-CS catalysts. The improved performance of CS-SDA catalysts is attributed to 48% increase in cobalt dispersion compared to Al2O3 supported CS catalysts, which is again caused by the decrease in the cobalt -support interaction for SDA supports. The metal support interactions were analyzed using XPS and H-2 TPR-TPD experiments. Combustion method produced catalysts with smaller crystallite size (17-18 nm), higher degree of reduction (similar to 92%) and higher metal dispersion (16.1%) compared to the IWI method. Despite its enhanced properties, the CS catalysts require prominently higher reduction temperatures (similar to 1100-1200 K). The hydrocarbon product analysis for Al2O3 supported catalyst showed higher paraffin wax concentrations compared to SDA supported catalysts, due to the lower surface basicity of Al2O3. This work reveals the impact of the CS catalysts and the nature of support on FT activity and hydrocarbon product spectrum. (C) 2016 Elsevier Ltd. All rights reserved.