95 resultados para PERIODIC ARRAY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Assemblages of circular tubes and circular honeycombs in close packed arrangement are presently both competing and complementing regular honeycomb structures (HCS). The intrinsic isotropy of bundled tubes/rings in hexagonal arrays restricts their use to applications with isotopic need. With the aim of extending the utility of tubes/rings assemblages to anisotropic needs, this paper explores the prospects of bundled tubes and circular honeycombs in a general diamond array structure (DAS) to cater these needs. To this end, effective transverse Young's moduli and Poisson's ratio for thick/thin DAS are obtained theoretically. Analysis frameworks including thin ring theory (TRT), curved beam theory (CBT) and elasticity formulations are tested and corroborated by FEA employing contact elements. Results indicate that TRT and CBT are reasonable for thin tubes and honeycombs. Nevertheless, TRT yields compact formulae to study the anisotropy ratio, moduli spectrum and sensitivity of the assemblage as a function of thicknesses and array structure. These formulae supplement designers as a guide to tailor the structures. On the other hand, elasticity formulation can estimate over a larger range including very thick tubes/rings. In addition, this formulation offers to estimate refined transverse strengths of assemblages. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of circular hexagonal honeycomb structures and tube assemblies in energy absorption systems has attracted a large number of literature on their characterization under crushing and impact loads. Notwithstanding these, effective shear moduli (G*) required for complete transverse elastic characterization and in analyses of hierarchical structures have received scant attention. In an attempt to fill this void, the present study undertakes to evaluate G* of a generalized circular honeycomb structures and tube assemblies in a diamond array structure (DAS) with no restriction on their thickness. These structures present a potential to realize a spectrum of moduli with minimal modifications, a point of relevance for manufactures and designers. To evaluate G* in this paper, models based on technical theories - thin ring theory and curved beam theory - and rigorous theory of elasticity are investigated and corroborated with FEA employing contact elements. Technical theories which give a good match for thin HCS offer compact expressions for moduli which can be harvested to study sensitivity of moduli on topology. On the other hand, elasticity model offers a very good match over a large range of thickness along with exact analysis of stresses by employing computationally efficient expressions. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Characterized not just by high Mach numbers, but also high flow total enthalpies-often accompanied by dissociation and ionization of flowing gas itself-the experimental simulation of hypersonic flows requires impulse facilities like shock tunnels. However, shock tunnel simulation imposes challenges and restrictions on the flow diagnostics, not just because of the possible extreme flow conditions, but also the short run times-typically around 1 ms. The development, calibration and application of fast response MEMS sensors for surface pressure measurements in IISc hypersonic shock tunnel HST-2, with a typical test time of 600 mu s, for the complex flow field of strong (impinging) shock boundary layer interaction with separation close to the leading edge, is delineated in this paper. For Mach numbers 5.96 (total enthalpy 1.3 MJ kg(-1)) and 8.67 (total enthalpy 1.6 MJ kg(-1)), surface pressures ranging from around 200 Pa to 50 000 Pa, in various regions of the flow field, are measured using the MEMS sensors. The measurements are found to compare well with the measurements using commercial sensors. It was possible to resolve important regions of the flow field involving significant spatial gradients of pressure, with a resolution of 5 data points within 12 mm in each MEMS array, which cannot be achieved with the other commercial sensors. In particular, MEMS sensors enabled the measurement of separation pressure (at Mach 8.67) near the leading edge and the sharply varying pressure in the reattachment zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An optimal control problem in a two-dimensional domain with a rapidly oscillating boundary is considered. The main features of this article are on two points, namely, we consider periodic controls in the thin periodic slabs of period epsilon > 0, a small parameter, and height O(1) in the oscillatory part, and the controls are characterized using unfolding operators. We then do a homogenization analysis of the optimal control problems as epsilon -> 0 with L-2 as well as Dirichlet (gradient-type) cost functionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyhedral model provides an expressive intermediate representation that is convenient for the analysis and subsequent transformation of affine loop nests. Several heuristics exist for achieving complex program transformations in this model. However, there is also considerable scope to utilize this model to tackle the problem of automatic memory footprint optimization. In this paper, we present a new automatic storage optimization technique which can be used to achieve both intra-array as well as inter-array storage reuse with a pre-determined schedule for the computation. Our approach works by finding statement-wise storage partitioning hyper planes that partition a unified global array space so that values with overlapping live ranges are not mapped to the same partition. Our heuristic is driven by a fourfold objective function which not only minimizes the dimensionality and storage requirements of arrays required for each high-level statement, but also maximizes inter statement storage reuse. The storage mappings obtained using our heuristic can be asymptotically better than those obtained by any existing technique. We implement our technique and demonstrate its practical impact by evaluating its effectiveness on several benchmarks chosen from the domains of image processing, stencil computations, and high-performance computing.