410 resultados para Organizational Structures
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A methodology for reliability based optimum design of reinforced soil structures subjected to horizontal and vertical sinusoidal excitation based on pseudo-dynamic approach is presented. The tensile strength of reinforcement required to maintain the stability is computed using logarithmic spiral failure mechanism. The backfill soil properties, geometric and strength properties of reinforcement are treated as random variables. Effects of parameters like soil friction angle, horizontal and vertical seismic accelerations, shear and primary wave velocities, amplification factors for seismic acceleration on the component and system probability of failures in relation to tension and pullout capacities of reinforcement have been discussed. In order to evaluate the validity of the present formulation, static and seismic reinforcement force coefficients computed by the present method are compared with those given by other authors. The importance of the shear wave velocity in the estimation of the reliability of the structure is highlighted. The Ditlevsen's bounds of system probability of failure are also computed by taking into account the correlations between three failure modes, which is evaluated using the direction cosines of the tangent planes at the most probable points of failure. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
We describe an investigation of (Ba3MMWO9)-M-II-W-IV oxides for M-II = Ca, Zn, and other divalent metals and M-IV = Ti, Zr. In general, a 1:2-ordered 6H (hexagonal, P6(3)/mmc) perovskite structure is stabilized at high temperatures (1300 degrees C) for all of the (Ba3MTiWO9)-Ti-II oxides investigated. An intermediate phase possessing a partially ordered 1:1 double perovskite (3C) structure with the cation distribution, Ba-2(Zn2/3Ti1/3)(W2/3Ti1/3)O-6, is obtained at 1200 degrees C for Ba3ZnTiWO9. Sr substitution for Ba in the latter stabilizes the cubic 3C structure instead of the 6H structure. A metastable Ba3CaZrWO9 that adopts the 3C (cubic, Fm (3) over barm) structure has also been synthesized by a low-temperature metathesis route. Besides yielding several new perovskite oxides that may be useful as dielectric ceramics, the present investigation provides new insights into the complex interplay of crystal chemistry (tolerance factor) and chemical bonding (anion polarization and d(0)-induced distortion of metal-oxygen octahedra) in the stabilization of 6H versus 3C perovskite structures for the (Ba3MMWO9)-M-II-W-IV series.
Resumo:
Peptidyl-tRNA hydrolase cleaves the ester bond between tRNA and the attached peptide in peptidyl-tRNA in order to avoid the toxicity resulting from its accumulation and to free the tRNA available for further rounds in protein synthesis. The structure of the enzyme from Mycobacteritan tuberculosis has been determined in three crystal forms. This structure and the structure of the enzyme frorn Escherichia coli in its crystal differ substantially on account of the binding of the C terminus of the E. coli enzyme to the peptide-binding site of a neighboring molecule in the crystal. A detailed examination of this difference led to an elucidation of the plasticity of the binding site of the enzyme. The peptide-binding site of the enzyme is a cleft between the body, of the molecule and a polypepticle Y stretch involving a loop and a helix. This stretch is in the open conformation when the enzyme is in the free state as in the crystals of M. tuberculosis peptidyl-tRNA hydrolase. Furthermore, there is no physical continuity between the tRNA and the peptide-binding sites. The molecule in the E. coli crystal mimics the peptide-bound enzyme molecule. The peptide stretch referred to earlier now closes on the bound peptide. Concurrently, a channel connecting the tRNA and the peptide-binding site opens primarily through the concerted movement of two residues. Thus, the crystal structure of M. tuberculosis peptidyl-tRNA hydrolase when compared with the crystal structure of the E. coli enzyme, leads to a model of structural changes associated with enzyme action on the basis of the plasticity of the molecule. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Experimental charge density distributions in two known conformational polymorphs (orange and yellow) of coumarin 314 dye are analyzed based on multipole modeling of X-ray diffraction data collected at 100 K. The experimental results are compared with the charge densities derived from multipole modeling of theoretical structure factors obtained from periodic quantum calculation with density functional theory (DFT) method and B3LYP/6-31G(d,p) level of theory. The presence of disorder at the carbonyl oxygen atom of ethoxycarbonyl group in the yellow form, which was not identified earlier, is addressed here. The investigationof intermolecular interactions, based on Hirshfeld surface analysis and topological properties via quantum theory of atoms in molecule and total electrostatic interaction energies, revealed significant differences between the polymorphs. The differences of electrostatic nature in these two polymorphic forms were unveiled via construction of three-dimensional deformation electrostatic potential maps plotted over the molecular surfaces. The lattice energies evaluated from ab initio calculations on the two polymorphic forms indicate that the yellow form is likely to be the most favorable thermodynamically. The dipole moments derived from experimental and theoretical charge densities and also from Lorentz tensor approach are compared with the single-molecule dipole moments. In each case, the differences of dipole moments between the polymorphs are identified.
Resumo:
This study views each protein structure as a network of noncovalent connections between amino acid side chains. Each amino acid in a protein structure is a node, and the strength of the noncovalent interactions between two amino acids is evaluated for edge determination. The protein structure graphs (PSGs) for 232 proteins have been constructed as a function of the cutoff of the amino acid interaction strength at a few carefully chosen values. Analysis of such PSGs constructed on the basis of edge weights has shown the following: 1), The PSGs exhibit a complex topological network behavior, which is dependent on the interaction cutoff chosen for PSG construction. 2), A transition is observed at a critical interaction cutoff, in all the proteins, as monitored by the size of the largest cluster (giant component) in the graph. Amazingly, this transition occurs within a narrow range of interaction cutoff for all the proteins, irrespective of the size or the fold topology. And 3), the amino acid preferences to be highly connected (hub frequency) have been evaluated as a function of the interaction cutoff. We observe that the aromatic residues along with arginine, histidine, and methionine act as strong hubs at high interaction cutoffs, whereas the hydrophobic leucine and isoleucine residues get added to these hubs at low interaction cutoffs, forming weak hubs. The hubs identified are found to play a role in bringing together different secondary structural elements in the tertiary structure of the proteins. They are also found to contribute to the additional stability of the thermophilic proteins when compared to their mesophilic counterparts and hence could be crucial for the folding and stability of the unique three-dimensional structure of proteins. Based on these results, we also predict a few residues in the thermophilic and mesophilic proteins that can be mutated to alter their thermal stability.
Resumo:
An apolar helical decapeptide with different end groups, Boc- or Ac-, crystallizes in a completely parallel fashion for the Boc-analog and in an antiparallel fashion for the Ac-analog. In both crystals, the packing motif consists of rows of parallel molecules. In the Boc-crystals, adjacent rows assemble with the helix axes pointed in the same direction. In the Ac-crystals, adjacent rows assemble with the helix axes pointed in opposite directions. The conformations of the molecules in both crystals are quite similar, predominantly alpha-helical, except for the tryptophanyl side chain where chi 1 congruent to 60 degrees in the Boc- analog and congruent to 180 degrees in the Ac-analog. As a result, there is one lateral hydrogen bond between helices, N(1 epsilon)...O(7), in the Ac-analog. The structures do not provide a ready rationalization of packing preference in terms of side-chain interactions and do not support a major role for helix dipole interactions in determining helix orientation in crystals. The crystal parameters are as follow. Boc-analog: C60H97N11O13.C3H7OH, space group Pl with a = 10.250(3) A, b = 12.451(4) A, c = 15.077(6) A, alpha = 96.55(3) degrees, beta = 92.31(3) degrees, gamma = 106.37(3) degrees, Z = 1, R = 5.5% for 5581 data ([F] greater than 3.0 sigma(F)), resolution 0.89 A. Ac-analog: C57H91N11O12, space group P2(1) with a = 9.965(1) A, b = 19.707(3) A, c = 16.648(3) A, beta = 94.08(1), Z = 2, R = 7.2% for 2530 data ([F] greater than 3.0 sigma(F)), resolution 1.00 A.
Resumo:
Two IS- and 16-residue peptides containing a-aminoisobutyric acid (Aib) have been synthesized, as part of a strategy to construct stereochemically rigid peptide helices, in a modular approach to design of protein mimics. The peptides Boc-(Val-Ala-Leu-Aib),-OMe ( I ) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-(Val-Ala-Leu-Aib()11z)- OhaMvee been crystallized.Both crystals are stable only in the presence of mother liquor or water. The crystal data are as follows. I: C78H140N16019~2H20,P2,, a = 16.391 (3) A, b = 16.860 (3) A, c = 18.428 (3) A, p = 103.02 (I)O, Z = 2, R = 9.6% for 3445 data with lFol >30(F), resolution 0.93 A. 11: C7,Hl,,N,S018.7.5H,0, C2221, a = 18.348 ( 5 ) A, b = 47.382 (1 1) A, c = 24.157 ( 5 ) A, Z =8, R = l0,6%, for 3147 data with lFol > 3a(F), resolution 1.00 A. The 15-residue peptide (11) is entirely a helical, while the 16-residue peptide ( I ) has a short segment of 310 helix at the N terminus. The packing of the helices in the crystals is rather incfficicnt with no particular attractions between Leu-Leu side chains, or any other pair. Both crystals have fairly large voids, which are filled with water molecules in a disordered fashion. Water molecule sites near the polar head-to-tail regions are well detcrmined, those closer to the hydrophobic side chains less so and a number of possible water sites in the remaining "empty" space are not determined. No interdigitation of Leu side chains is observed in the crystal as is hypothesized in the "leucine zipper" class of DNA binding proteins.
Resumo:
The crystal structure determination of three heptapeptides containing alpha-aminoisobutyryl (Aib) residues as a means of helix stabilization provides a high-resolution characterization of 6-->1 hydrogen-bonded conformations, reminiscent of helix-terminating structural features in proteins. The crystal parameters for the three peptides, Boc-Val-Aib-X-Aib-Ala-Aib-Y-OMe, where X and Y are Phe, Leu (I), Leu, Phe (II) and Leu, Leu (III) are: (I) space group P1, Z = 1, a = 9.903 A, b = 10.709 A, c = 11.969 A, alpha = 102.94 degrees, beta = 103.41 degrees, gamma = 92.72 degrees, R = 4.55%; (II) space group P21, Z = 2, a = 10.052 A, b = 17.653 A, c = 13.510 A, beta = 108.45 degrees, R = 4.49%; (III) space group P1, Z = 2 (two independent molecules IIIa and IIIb in the asymmetric unit), a = 10.833 A, b = 13.850 A, c = 16.928 A, alpha = 99.77 degrees, beta = 105.90 degrees, gamma = 90.64 degrees, R = 8.54%. In all cases the helices form 3(10)/alpha-helical (or 3(10)helical) structures, with helical columns formed by head-to-tail hydrogen bonding. The helices assemble in an all-parallel motif in crystals I and III and in an antiparallel motif in II. In the four crystallographically characterized molecules, I, II, IIIa and IIIb, Aib(6) adopts a left-handed helical (hL) conformation with positive phi, psi values, resulting in 6-->1 hydrogen-bond formation between Aib(2) CO and Leu(7)/Phe(7) NH groups. In addition a 4-->1 hydrogen bond is seen between Aib(3) CO and Aib(6) NH groups. This pattern of hydrogen bonding is often observed at the C-terminus of helices proteins, with the terminal pi-type turn being formed by four residues adopting the hRhRhRhL conformation.
Resumo:
The temperature and power dependence of Fermi-edge singularity (FES) in high-density two-dimensional electron gas, specific to pseudomorphic AlxGa1-xAs/InGa1-yAs/GaAs heterostructures is studied by photoluminescence (PL). In all these structures, there are two prominent transitions E-11 and E-21 considered to be the result of electron-hole recombination from first and second electron sub-bands with that of first heavy-hole sub-band. FES is observed approximately 5-10 meV below the E-21 transition. At 4.2 K, FES appears as a lower energy shoulder to the E-21 transition. The PL intensity of all the three transitions E-11, FES and E-21 grows linearly with excitation power. However, we observe anomalous behavior of FES with temperature. While PL intensity of E-11 and E-21 decrease with increasing temperature, FES transition becomes stronger initially and then quenches-off slowly (till 40K). Though it appears as a distinct peak at about 20 K, its maximum is around 7 - 13 K.
Resumo:
Two crystals structures of a nonapeptide (anhydrous and hydrated) containing the amino acid residue alpha, alpha-di-n-butylglycyl, reveal a mixed 3(10)/alpha-helical conformation. Residues 1-7 adopt phi, psi values in the helical region, with Val(8) being appreciably distorted. The Dbg residue has phi, psi values of -40, -37 degrees and -46, -40 degrees in two crystals with the two butyl side chains mostly extended in each. Peptide molecules in the crystals pack into helical columns. The crystal parameters are C50H91N9O12, space group P2(1), with a = 9.789(1) Angstrom, b = 20.240(2) Angstrom, c = 15.998(3) Angstrom, beta = 103.27(1); Z = 2, R = 10.3% for 1945 data observed >3 sigma(F) and C50H91N9O12. 3H(2)O, space group P2(1), with a = 9.747(3) Angstrom, b = 21.002(8) Angstrom, c = 15.885(6) Angstrom, beta = 102.22(3)degrees, Z = 2, R = 13.6% for 2535 data observed >3 sigma(F). The observation of a helical conformation at Dbg suggests that the higher homologs in the alpha, alpha-dialkylated glycine series also have a tendency to stabilize peptide helices. (C) Munksgaard 1996.
Resumo:
Two new alkali metal borophosphates, K-3[BP(3)o(9)(OH)(3)] and Rb-3[B2P3O11(OH)(2)], were synthesized by applying solvothermal techniques using ethanol as solvent. The crystal structures were solved by means of single-crystal X-ray diffraction (K-3[BP3O9(OH)(3)], monoclinic, C2/c (No. 15), a = 2454.6(8) pm, b = 736.3(2) pm, c = 1406.2(4) pm, beta = 118.35(2)degrees, Z = 8; Rb-3[B2P3O11(OH)(2)], monoclinic, P2(1)/c (No. 14), a = 781.6(2) pm, b:= 667.3(2) pm, c = 2424.8(5) pm, beta = 92.88(1)degrees, Z = 4). Both crystal structures comprise borophosphate chain anions. While for the rubidium compound a loop-branched chain motif is found as common for most of the chain anions in alkali metal borophosphates, the crystal structure of the potassium phase comprises the first open-branched chain with the highest phosphate content found so far in this group of compounds. Both chain anions are Closely related to known anhydrous or hydrated phases, and the structural relations are discussed in terms of how the presence of OH groups and hydrogen bonds as well as number, charge, and size of charge balancing cations influence the 3D structural arrangement. The anionic entities are classified in terms of general principles of structural systematics for borophosphates.
Resumo:
An analysis of the nature and distribution of disallowed Ramachandran conformations of amino acid residues observed in high resolution protein crystal structures has been carried out. A data set consisting of 110 high resolution, non-homologous, protein crystal structures from the Brookhaven Protein Data Bank was examined. The data set consisted of a total of 18,708 non-Gly residues, which were characterized on the basis of their backbone dihedral angles (φ, ψ). Residues falling outside the defined “broad allowed limits” on the Ramachandran map were chosen and the reportedB-factor value of the α-carbon atom was used to further select well defined disallowed conformations. The conformations of the selected 66 disallowed residues clustered in distinct regions of the Ramachandran map indicating that specific φ, ψ angle distortions are preferred under compulsions imposed by local constraints. The distribution of various amino acid residues in the disallowed residue data set showed a predominance of small polar/charged residues, with bulky hydrophobic residues being infrequent. As a further check, for all the 66 cases non-hydrogen van der Waals short contacts in the protein structures were evaluated and compared with the ideal “Ala-dipeptide” constructed using disallowed dihedral angle (φ, ψ) values. The analysis reveals that short contacts are eliminated in most cases by local distortions of bond angles. An analysis of the conformation of the identified disallowed residues in related protein structures reveals instances of conservation of unusual stereochemistry.
Resumo:
The crystal structures of two oligopeptides containing di-n-propylglycine (Dpg) residues, Boc-Gly-Dpg-Gly-Leu-OMe (1) and Boc-Val-Ala-Leu-Dpg-Val-Ala-Leu-Val-Ala-Leu-Dpg-Val-Ala-Leu-OMe (2) are presented. Peptide 1 adopts a type I' beta-turn conformation with Dpg(2)-Gly(3) at the corner positions. The 14-residue peptide 2 crystallizes with two molecules in the asymmetric unit, both of which adopt alpha-helical conformations stabilized by 11 successive 5 -> 1 hydrogen bonds. In addition, a single 4 -> 1 hydrogen bond is also observed at the N-terminus. All live Dpg residues adopt backbone torsion angles (phi, psi) in the helical region of conformational space. Evaluation of the available structural data on Dpg peptides confirm the correlation between backbone bond angle N-C-alpha-C' (tau) and the observed backbone phi,psi values. For tau > 106 degrees, helices are observed, while fully extended structures are characterized by tau < 106 degrees. The mean r values for extended and folded conformations for the Dpg residue are 103.6 degrees +/- 1.7 degrees and 109.9 degrees +/- 2.6 degrees, respectively. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Bis-bidentate Schiff base ligand L and its two mononuclear complexes [CuL(CH3CN)(2)]ClO4 (1)and [CuL(PPh3)(2)]ClO4 (2)have been prepared and thoroughly characterized by elemental analyses, IR, UV-Vis, NMR spectroscopy and X-ray diffraction analysis. In both the complexes the metal ion auxiliaries adopt tetrahedral coordination environment. Their reactivity, electrochemical and photophysical behavior have been studied. Complex 1 shows reversible Cu-II/I couple with potential 0.74 V versus Ag/AgCl in CH2Cl2. At room temperature L is weakly fluorescent in CH2Cl2, however in Cu(I)complexes 1 and 2 the emission in quenched. (C) 2009 Elsevier B. V. All rights reserved.