98 resultados para Ordinary cokriging
Resumo:
We study the tradeoff between delivery delay and energy consumption in a delay-tolerant network in which a message (or a file) has to be delivered to each of several destinations by epidemic relaying. In addition to the destinations, there are several other nodes in the network that can assist in relaying the message. We first assume that, at every instant, all the nodes know the number of relays carrying the message and the number of destinations that have received the message. We formulate the problem as a controlled continuous-time Markov chain and derive the optimal closed-loop control (i.e., forwarding policy). However, in practice, the intermittent connectivity in the network implies that the nodes may not have the required perfect knowledge of the system state. To address this issue, we obtain an ordinary differential equation (ODE) (i.e., a deterministic fluid) approximation for the optimally controlled Markov chain. This fluid approximation also yields an asymptotically optimal open-loop policy. Finally, we evaluate the performance of the deterministic policy over finite networks. Numerical results show that this policy performs close to the optimal closed-loop policy.
Resumo:
Geopolymers are an alternative binder to portland cement in the manufacture of mortars and concrete, as its three-dimensional aluminosilicate network imparts excellent mechanical properties. Use of geopolymers in place of ordinary portland cement is favored owing to the possible energy and carbon dioxide savings. River sand is another construction industry material that needs development of a sustainable alternate in India. Geopolymerization of fly ash amorphous silica mixtures is employed to produce fine aggregates as a possible replacement to river sand. Geopolymerization of fly ash amorphous silica mixtures in 10M NaOH solution at 100 degrees C for 7days produced fine aggregates termed fly ash geopolymer sand (FAPS)] that had comparable grain size distribution, specific gravity, and improved frictional resistance with river sand. The FAPS particles exhibited more alkaline pH (12.5) and higher total dissolved solids (TDS) concentration (TDS=747 mg/L) in comparison to the river sand specimen (pH=7.9 and TDS=32.5 mg/L). However, when used as fine aggregate in mortar, FAPS-mortar specimens develop similar pH, lower TDS, similar compressive strength, and modulus in relation to river sand-mortar specimens. The experimental results suggest that FAPS particles have the potential to replace river sand in the manufacture of mortar and concrete.
Resumo:
The steady mixed convection flow and heat transfer from an exponentially stretching vertical surface in a quiescent Maxwell fluid in the presence of magnetic field, viscous dissipation and Joule heating have been studied. The stretching velocity, surface temperature and magnetic field are assumed to have specific exponential function forms for the existence of the local similarity solution. The coupled nonlinear ordinary differential equations governing the local similarity flow and heat transfer have been solved numerically by Chebyshev finite difference method. The influence of the buoyancy parameter, viscous dissipation, relaxation parameter of Maxwell fluid, magnetic field and Prandtl number on the flow and heat transfer has been considered in detail. The Nusselt number increases significantly with the Prandtl number, but the skin friction coefficient decreases. The Nusselt number slightly decreases with increasing viscous dissipation parameter, but the skin friction coefficient slightly increases. Maxwell fluid reduces both skin friction coefficient and Nusselt number, whereas buoyancy force enhances them.
Resumo:
We investigate the dynamics of a sinusoidally driven ferromagnetic martensitic ribbon by adopting a recently introduced model that involves strain and magnetization as order parameters. Retaining only the dominant mode of excitation we reduce the coupled set of partial differential equations for strain and magnetization to a set of coupled ordinary nonlinear equations for the strain and magnetization amplitudes. The equation for the strain amplitude takes the form of parametrically driven oscillator. Finite strain amplitude can only be induced beyond a critical value of the strength of the magnetic field. Chaotic response is seen for a range of values of all the physically interesting parameters. The nature of the bifurcations depends on the choice of temperature relative to the ordering of the Curie and the martensite transformation temperatures. We have studied the nature of response as a function of the strength and frequency of the magnetic field, and magneto-elastic coupling. In general, the bifurcation diagrams with respect to these parameters do not follow any standard route. The rich dynamics exhibited by the model is further illustrated by the presence of mixed mode oscillations seen for low frequencies. The geometric structure of the mixed mode oscillations in the phase space has an unusual deep crater structure with an outer and inner cone on which the orbits circulate. We suggest that these features should be seen in experiments on driven magneto-martensitic ribbons. (C) 2014 Elsevier B. V. All rights reserved.
Resumo:
A state-based micropolar peridynamic theory for linear elastic solids is proposed. The main motivation is to introduce additional micro-rotational degrees of freedom to each material point and thus naturally bring in the physically relevant material length scale parameters into peridynamics. Non-ordinary type modeling via constitutive correspondence is adopted here to define the micropolar peridynamic material. Along with a general three dimensional model, homogenized one dimensional Timoshenko type beam models for both the proposed micropolar and the standard non-polar peridynamic variants are derived. The efficacy of the proposed models in analyzing continua with length scale effects is established via numerical simulations of a few beam and plane-stress problems. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The quantum statistical mechanical propagator for a harmonic oscillator with a time-dependent force constant, m omega(2)(t), has been investigated in the past and was found to have only a formal solution in terms of the solutions of certain ordinary differential equations. Such path integrals are frequently encountered in semiclassical path integral evaluations and having exact analytical expressions for such path integrals is of great interest. In a previous work, we had obtained the exact propagator for motion in an arbitrary time-dependent harmonic potential in the overdamped limit of friction using phase space path integrals in the context of Levy flights - a result that can be easily extended to Brownian motion. In this paper, we make a connection between the overdamped Brownian motion and the imaginary time propagator of quantum mechanics and thereby get yet another way to evaluate the latter exactly. We find that explicit analytic solution for the quantum statistical mechanical propagator can be written when the time-dependent force constant has the form omega(2)(t) = lambda(2)(t) - d lambda(t)/dt where lambda(t) is any arbitrary function of t and use it to evaluate path integrals which have not been evaluated previously. We also employ this method to arrive at a formal solution of the propagator for both Levy flights and Brownian subjected to a time-dependent harmonic potential in the underdamped limit of friction. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
In this work, a methodology to achieve ordinary-, medium-, and high-strength self-consolidating concrete (SCC) with and without mineral additions is proposed. The inclusion of Class F fly ash increases the density of SCC but retards the hydration rate, resulting in substantial strength gain only after 28 days. This delayed strength gain due to the use of fly ash has been considered in the mixture design model. The accuracy of the proposed mixture design model is validated with the present test data and mixture and strength data obtained from diverse sources reported in the literature.
Resumo:
This paper deals with the study of the nonlinear dynamics of a rotating flexible link modeled as a one dimensional beam, undergoing large deformation and with geometric nonlinearities. The partial differential equation of motion is discretized using a finite element approach to yield four nonlinear, nonautonomous and coupled ordinary differential equations (ODEs). The equations are nondimensionalized using two characteristic velocities-the speed of sound in the material and a velocity associated with the transverse bending vibration of the beam. The method of multiple scales is used to perform a detailed study of the system. A set of four autonomous equations of the first-order are derived considering primary resonances of the external excitation and one-to-one internal resonances between the natural frequencies of the equations. Numerical simulations show that for certain ranges of values of these characteristic velocities, the slow flow equations can exhibit chaotic motions. The numerical simulations and the results are related to a rotating wind turbine blade and the approach can be used for the study of the nonlinear dynamics of a single link flexible manipulator.