235 resultados para Optical Wave-guides
Resumo:
Explosive driven micro blast waves are generated in the laboratory using NONEL tubes. The explosive mixture coated to the inner walls of the plastic Nonel tube comprises of HMX and Aluminum ( 18mg/m). The detonation is triggered electrically to generate micro blast waves from the open end of the tube. Flow visualization and over pressure measurements have been carried out to understand the propagation dynamics of these micro-blast waves in both confined and unconfined domains. The classical cubic root law used for large scale blast correlation appears to hold good even for these micro-blasts generated in the laboratory.
Resumo:
Pristine and molybdenum filled double walled carbon nanotubes (DWNTs) suspended in D2O show excellent ultrafast optical switching properties investigated through femtosecond Z-scan and degenerate pump-probe method using 50 fs pulses with central photon energy of 1.57 eV. For pristine-DWNT, the two photon absorption coefficient, beta and nonlinear refraction coefficient, n2 are 4.9×10−8 cm/W, and 9.5×10−11 cm2/W, respectively, which yield one photon figure of merit, W=133 and two photon figure of merit, T=0.4. The degenerate pump-probe measurements show strong photoinduced bleaching with biexponential decay with time constants ~150 and 600 fs. ©2009 American Institute of Physics
Resumo:
A method that yields optical Barker codes of smallest known lengths for given discrimination is described.
Resumo:
The presence of biquadratic exchange in a one-dimensional ferromagnetic Heisenberg chain with an impurity spin is shown to change the nature of the impurity modes and its eigenvalues considerably which can be observed experimentally.
Resumo:
Certain binary codes having good autocorrelation properties akin to Barker codes are studied.
Resumo:
Using the singular surface theory, an expression for the jump in vorticity across a shock wave of arbitrary shape propagating in a uniform, perfect fluid occupying the space-time of special relativity, has been derived. It has been shown that the jump in vorticity across a shock of given strength and curvature depends only on the velocity of the medium ahead of the shock.
Resumo:
Metallo tetraphenylporphyrins form I : I molecular complexes with 4,6-dinitrobenzofuroxan. The molecular association is described in terms of T-n. interaction with porphyrins functioning as donors. The association constants and thermodynamic parameters have been evaluated using optical absorption and 'H nmr spectral methods. Based on the binding constants, the donor ability of various metalloporphyrins can be arranged in the following order: Pd(I1) > Co(I1) > Cu(I1) > Ni(I1) - VO(1V) - 2H > Zn(l1). Electron paramagnetic resonance studies of the complexes reveal that the IT-complexation results in changes in the electronic structure of the central metal ions which are reflected in the changes in the M-N 5 bonding. The dipolar contribution to the acceptor proton chemical shifts in the CoTPP complex has been partitioned from ring current contributions using the shifts observed in the ZnTPP complex. The shifts, along with the line broadening ratios observed for the CoTPP complex, are used to arrive at the possible solution structures of the complexes.
Resumo:
The relation between optical Barker codes and self-orthogonal convolutional codes is pointed out. It is then used to update the results in earlier publication.
Resumo:
The spectrum of short-closed chains up to N=12 are studied by exact diagonalization to obtain the spin-wave spectrum of the Hamiltonian H=2J Sigma i=1Nsi.si+1+2J alpha Sigma i=1Nsi.si+2, -1.0
Resumo:
The wurtzite phase of ZnS nanocrystal has been prepared by annealing in 200-600 degrees C temperature range, its cubic phase of 2-3 nm size. prepared through soft chemical method. Results of isochronal experiments of 2 h at different temperatures indicate that visible transformation to wurtzite from cubic ZnS appears at a temperature of 400 degrees C, which is about three times smaller than that of bulk ZnS phase transition temperature. The phases, nanostructures, and optical absorption characteristics are obtained through X-ray diffraction. transmission electron microscopy, and UV-visible absorption spectroscopy. A stable and green photoluminescence emission peaked at 518 nm is observed from the 600 degrees C annealed samples, under ultraviolet light excitation.
Resumo:
Abstract is not available.
Resumo:
The special class of quasi-simple wave solutions is studied for the system of partial differential equations governing inviscid acoustic gravity waves. It is shown that these traveling wave solutions do not admit shocks. Periodic solutions are found to exist when there is no propagation in the vertical direction. The solutions for some particular cases are depicted graphically. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
A theoretical study on the propagation of plane waves in the presence of a hot mean flow in a uniform pipe is presented. The temperature variation in the pipe is taken to be a linear temperature gradient along the axis. The theoretical studies include the formulation of a wave equation based on continuity, momentum, and state equation, and derivation of a general four-pole matrix, which is shown to yield the well-known transfer matrices for several other simpler cases.
Resumo:
The problem of excitation of 11zultilayercd-graded-dielectric-coatedc onductor by a magnetic ring source is fornzulated in the ,form of a contour integrul which is rolved by using the method of steepest descent. Numerical evaluation of launching efiiency shows that high value of about 90 percent can be attained by choosing proper dimensions of the launcher with respect to the dimension of the surface wave line.