106 resultados para Objets fragmentés


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A regular secondary structure is described by a well defined set of values for the backbone dihedral angles (phi,psi and omega) in a polypeptide chain. However in real protein structures small local variations give rise to distortions from the ideal structures, which can lead to considerable variation in higher order organization. Protein structure analysis and accurate assignment of various structural elements, especially their terminii, are important first step in protein structure prediction and design. Various algorithms are available for assigning secondary structure elements in proteins but some lacunae still exist. In this study, results of a recently developed in-house program ASSP have been compared with those from STRIDE, in identification of alpha-helical regions in both globular and membrane proteins. It is found that, while a combination of hydrogen bond patterns and backbone torsional angles (phi-psi) are generally used to define secondary structure elements, the geometry of the C-alpha atom trace by itself is sufficient to define the parameters of helical structures in proteins. It is also possible to differentiate the various helical structures by their C-alpha trace and identify the deviations occurring both at mid-positions as well as at the terminii of alpha-helices, which often lead to occurrence of 3(10) and pi-helical fragments in both globular and membrane proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Culturally protected forest patches or sacred groves have been the integral part of many traditional societies. This age old tradition is a classic instance of community driven nature conservation sheltering native biodiversity and supporting various ecosystem functions particularly hydrology. The current work in Central Western Ghats of Karnataka, India, highlights that even small sacred groves amidst humanised landscapes serve as tiny islands of biodiversity, especially of rare and endemic species. Temporal analysis of landuse dynamics reveals the changing pattern of the studied landscape. There is fast reduction of forest cover (15.14-11.02 %) in last 20 years to meet up the demand of agricultural land and plantation programs. A thorough survey and assessment of woody endemic species distribution in the 25 km(2) study area documented presence of 19 endemic species. The distribution of these species is highly skewed towards the culturally protected patches in comparison to other land use elements. It is found that, among the 19 woody endemic species, those with greater ecological amplitude are widely distributed in the studied landscape in groves as well as other land use forms whereas, natural population of the sensitive endemics are very much restricted in the sacred grove fragments. The recent degradation in the sacred grove system is perhaps, due to weakening of traditional belief systems and associated laxity in grove protection leading to biotic disturbances. Revitalisation of traditional practices related to conservation of sacred groves can go a long way in strengthening natural ecological systems of fragile humid tropical landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a new approach for producing precise constrained slices of programs in a language such as C. We build upon a previous approach for this problem, which is based on term-rewriting, which primarily targets loop-free fragments and is fully precise in this setting. We incorporate abstract interpretation into term-rewriting, using a given arbitrary abstract lattice, resulting in a novel technique for slicing loops whose precision is linked to the power of the given abstract lattice. We address pointers in a first-class manner, including when they are used within loops to traverse and update recursive data structures. Finally, we illustrate the comparative precision of our slices over those of previous approaches using representative examples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CONSPECTUS: Transition metals help to stabilize highly strained organic fragments. Metallacycles, especially unsaturated ones, provide much variety in this area. We had a sustained interest in understanding new C-C bond formation reactions affected by binuclear transition metal fragments Cp2M. One such study led to the exploration of the bimetallic C-C cleavage and coupled complexes, where the acetylide ligands bridge two metal atoms. The underlying M-C interaction in these complexes inspired the synthesis of a five-membered cyclocumulene complex, which opened a new phase in organometallic chemistry. The metallacyclocumulene produces a variety of C-C cleavage and coupled products including a radialene complex. Group 4 metallocenes have thus unlocked a fascinating chemistry by stabilizing strained unsaturated C4 organic fragments in the form of five-membered metallacyclocumulenes, metallacyclopentynes, and metallacycloallenes. Over the years, we have carried out a comprehensive theoretical study to understand the unusual stability and reactivity of these metallacycles. The unique (M-C-beta) interaction of the internal carbon atoms with the metal atom is the reason for unusual stability of the metallacycles. We have also shown that there is a definite dependence of the C-C coupling and cleavage reactions on the metal of metallacyclocumulenes. It demonstrates unexpected reaction pathways for these reactions. Based on this understanding, we have predicted and unraveled the stabilization factors of an unusual four-membered metallacycloallene complex. Indeed, our prediction about a four-membered heterometallacycle has led to an interesting bonding situation, which is experimentally realized. This type of M-C bonding is intriguing from a fundamental perspective and has great relevance in synthesizing unusual structures with interesting properties. In this Account, we first give a short prologue of what led to the present study and describe the salient features of the structure and bonding of the metallacyclocumulenes. The unusual reaction pathway of this metallacycle is explored next. Similar features of the metallacyclopentynes and metallacycloallenes are briefly mentioned. Then, we discuss the exploitation of the unique M-C bonding to design some exotic molecules such as a four-membered metallacycloallene complex. Our efforts to build a conceptual framework to understand these metallacycles and to exploit their chemistry continue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: mIHF belongs to a subfamily of proteins, distinct from E. coli IHF. Results: Functionally important amino acids of mIHF and the mechanism(s) underlying DNA binding, DNA bending, and site-specific recombination are distinct from that of E. coli IHF. Conclusion: mIHF functions could contribute beyond nucleoid compaction. Significance: Because mIHF is essential for growth, the molecular mechanisms identified here can be exploited in drug screening efforts. The annotated whole-genome sequence of Mycobacterium tuberculosis revealed that Rv1388 (Mtihf) is likely to encode for a putative 20-kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or the organization of the mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg-170, Arg-171, and Arg-173, which might be involved in DNA binding, and a conserved proline (Pro-150) in the tight turn. The phenotypic sensitivity of Escherichia coli ihfA and ihfB strains to UV and methyl methanesulfonate could be complemented with the wild-type Mtihf but not its alleles bearing mutations in the DNA-binding residues. Protein-DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, binds with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes DNA compaction into nucleoid-like or higher order filamentous structures. We therefore propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cis-peptide embedded segments are rare in proteins but often highlight their important role in molecular function when they do occur. The high evolutionary conservation of these segments illustrates this observation almost universally, although no attempt has been made to systematically use this information for the purpose of function annotation. In the present study, we demonstrate how geometric clustering and level-specific Gene Ontology molecular-function terms (also known as annotations) can be used in a statistically significant manner to identify cis-embedded segments in a protein linked to its molecular function. The present study identifies novel cis-peptide fragments, which are subsequently used for fragment-based function annotation. Annotation recall benchmarks interpreted using the receiver-operator characteristic plot returned an area-under-curve >0.9, corroborating the utility of the annotation method. In addition, we identified cis-peptide fragments occurring in conjunction with functionally important trans-peptide fragments, providing additional insights into molecular function. We further illustrate the applicability of our method in function annotation where homology-based annotation transfer is not possible. The findings of the present study add to the repertoire of function annotation approaches and also facilitate engineering, design and allied studies around the cis-peptide neighborhood of proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sheet-like clouds are common in turbulent gas and perhaps form via collisions between turbulent gas flows. Having examined the evolution of an isothermal shocked slab in an earlier contribution, in this work we follow the evolution of a sheet-like cloud confined by (thermal) pressure and gas in it is allowed to cool. The extant purpose of this endeavour is to study the early phases of core-formation. The observed evolution of this cloud supports the conjecture that molecular clouds themselves are three-phase media (comprising viz. a stable cold and warm medium, and a third thermally unstable medium), though it appears, clouds may evolve in this manner irrespective of whether they are gravitationally bound. We report, this sheet fragments initially due to the growth of the thermal instability (TI) and some fragments are elongated, filament-like. Subsequently, relatively large fragments become gravitationally unstable and sub-fragment into smaller cores. The formation of cores appears to be a three stage process: first, growth of the TI leads to rapid fragmentation of the slab; second, relatively small fragments acquire mass via gas-accretion and/or merger and third, sufficiently massive fragments become susceptible to the gravitational instability and sub-fragment to form smaller cores. We investigate typical properties of clumps (and smaller cores) resulting from this fragmentation process. Findings of this work support the suggestion that the weak velocity field usually observed in dense clumps and smaller cores is likely seeded by the growth of dynamic instabilities. Simulations were performed using the smooth particle hydrodynamics algorithm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Structural variations of different Z pi-aromatic three-membered ring systems of main group elements, especially group 14 and 13 elements as compared to the classical description of cyclopropenyl cation has been reviewed in this article. The structures of heavier analogues as well as group 13 analogues of cyclopropenyl cation showed an emergence of dramatic structural patterns which do not conform, to the general norms of carbon chemistry. Isolobal analogies between the main group fragments have been efficiently used to explain the peculiarities observed in these three-membered ring systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The exact process(es) that generate(s) dense filaments which then form prestellar cores within them is unclear. Here we study the formation of a dense filament using a relatively simple set-up of a pressure-confined, uniform-density cylinder. We examine if its propensity to form a dense filament and further, to the formation of prestellar cores along this filament, bears on the gravitational state of the initial volume of gas. We report a radial collapse leading to the formation of a dense filamentary cloud is likely when the initial volume of gas is at least critically stable (characterised by the approximate equality between the mass line-density for this volume and its maximum value). Though self-gravitating, this volume of gas, however, is not seen to be in free-fall. This post-collapse filament then fragments along its length due to the growth of a Jeans-like instability to form prestellar cores. We suggest dense filaments in typical star-forming clouds classified as gravitationally super-critical under the assumption of: (i) isothermality when in fact, they are not, and (ii) extended radial profiles as against pressure-truncated, that significantly over-estimates their mass line-density, are unlikely to experience gravitational free-fall. The radial density and temperature profile derived for this post-collapse filament is consistent with that deduced for typical filamentary clouds mapped in recent surveys of nearby star-forming regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphism in the orcinol: 4,4'-bipyridine cocrystal system is analyzed in terms of a robust convergent modular phenol...pyridine supramolecular synthon. Employing the Synthon Based Fragments Approach (SBFA) to transfer the multipole charge density parameters, it is demonstrated that the crystal landscape can be quantified in terms of intermolecular interaction energies in the five crystal forms so far isolated in this complex system. There are five crystal forms. The first has an open, divergent O-H...N based structure with alternating orcinol and bipyridine molecules. The other four polymorphs have different three-dimensional packing but all of them are similar at an interaction level, and are based on a modular O-H...N mediated supramolecular synthon that consists of two orcinol and two bipyridine molecules in a closed, convergent structure. The SBFA method, which depends on the modularity of synthons, provides good agreement between experiment and theory because it takes into account the supramolecular contribution to charge density. The existence of five crystal forms in this system shows that polymorphism in cocrystals need not be considered to be an unusual phenomenon. Studies of the crystal landscape could lead to an understanding of the kinetic pathways that control the crystallization processes, in other words the valleys in the landscape. These pathways are traditionally not considered in exercises pertaining to computational crystal structure prediction, which rather monitors the thermodynamics of the various stable forms in the system, in other words the peaks in the landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The annotated whole-genome sequence of Mycobacterium tuberculosis indicated that Rv1388 (Mtihf) likely encodes a putative 20 kDa integration host factor (mIHF). However, very little is known about the functional properties of mIHF or organization of mycobacterial nucleoid. Molecular modeling of the mIHF three-dimensional structure, based on the cocrystal structure of Streptomyces coelicolor IHF-duplex DNA, a bona fide relative of mIHF, revealed the presence of Arg170, Arg171, and Arg173, which might be involved in DNA binding, and a conserved proline (P150) in the tight turn. The phenotypic sensitivity of Escherichia coli Delta ihfA and Delta ihfB strains to UV and methylmethanesulfonate could be complemented with the wild-type Mtihf, but not its alleles bearing mutations in the DNA-binding residues. Protein DNA interaction assays revealed that wild-type mIHF, but not its DNA-binding variants, bind with high affinity to fragments containing attB and attP sites and curved DNA. Strikingly, the functionally important amino acid residues of mIHF and the mechanism(s) underlying its binding to DNA, DNA bending, and site-specific recombination are fundamentally different from that of E. coli IHF alpha beta. Furthermore, we reveal novel insights into IHF-mediated DNA compaction depending on the placement of its preferred binding sites; mIHF promotes compaction of DNA into nucleoid-like or higher-order filamentous structures. We hence propose that mIHF is a distinct member of a subfamily of proteins that serve as essential cofactors in site-specific recombination and nucleoid organization and that these findings represent a significant advance in our understanding of the role(s) of nucleoid-associated proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computational study of the interaction half-sandwich metal fragments (metal=Re/W, electron count=d(6)), containing linear nitrosyl (NO+), carbon monoxide (CO), trifluorophosphine (PF3), N-heterocyclic carbene (NHC) ligands with alkanes are conducted using density functional theory employing the hybrid meta-GGA functional (M06). Electron deficiency on the metal increases with the ligand in the order NHC < CO < PF3 < NO+. Electron-withdrawing ligands like NO+ lead to more stable alkane complexes than NHC, a strong electron donor. Energy decomposition analysis shows that stabilization is due to orbital interaction involving charge transfer from the alkane to the metal. Reactivity and dynamics of the alkane fragment are facilitated by electron donors on the metal. These results match most of the experimental results known for CO and PF3 complexes. The study suggests activation of alkane in metal complexes to be facile with strong donor ligands like NHC. (C) 2015 Wiley Periodicals, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Southern India is a collage of numerous crustal fragments formed since the Archean (2500 Ma ago) and reworked several times during the geological history. A close look at these terrains provides a window to understand the crustal evolutionary processes experienced by the continental crust in the past, such as crustal growth (formation of crust through addition of new magma) and crustal reworking (modification of an already existing crust). Here we discuss the evolutionary history of such a crustal fragment from the Southern Granulite Terrain (SGT) in peninsular India, namely Kolli-massif. Geology, structural deformation through time, and the implications in crustal assembly of southern India are exponded.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we calculate the escape fraction (f(esc)) of ionizing photons from starburst galaxies. Using 2D axisymmetric hydrodynamic simulations, we study superbubbles created by overlapping supernovae in OB associations. We calculate the escape fraction of ionizing photons from the centre of the disc along different angles through the superbubble and the gas disc. After convolving with the luminosity function of OB associations, we show that the ionizing photons escape within a cone of similar to 40 degrees, consistent with observations of nearby galaxies. The evolution of the escape fraction with time shows that it falls initially as cold gas is accumulated in a dense shell. After the shell crosses a few scaleheights and fragments, the escape fraction through the polar regions rises again. The angle-averaged escape fraction cannot exceed similar to1 - cos (1 rad)] = 0.5 from geometrical considerations (using the emission cone opening angle). We calculate the dependence of the time-and angle-averaged escape fraction on the mid-plane disc gas density (in the range n(0) = 0.15-50 cm(-3)) and the disc scaleheight (between z(0) = 10 and 600 pc). We find that the escape fraction is related to the disc parameters (the mid-plane disc density and scaleheight) roughly so that f(esc)(alpha)n(0)(2)z(0)(3) (with alpha approximate to 2.2) is a constant. For discs with a given warm neutral medium temperature, massive discs have lower escape fraction than low-mass galaxies. For Milky Way ISM parameters, we find f(esc) similar to 5 per cent, and it increases to approximate to 10 per cent for a galaxy 10 times less massive. We discuss the possible effects of clumpiness of the ISM on the estimate of the escape fraction and the implications of our results for the reionization of the Universe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The collapse of the primordial gas in the density regime similar to 10(8)-10(10) cm(-3) is controlled by the three-body H-2 formation process, in which the gas can cool faster than free-fall time-a condition proposed as the chemothermal instability. We investigate how the heating and cooling rates are affected during the rapid transformation of atomic to molecular hydrogen. With a detailed study of the heating and cooling balance in a 3D simulation of Pop III collapse, we follow the chemical and thermal evolution of the primordial gas in two dark matter minihalos. The inclusion of sink particles in modified Gadget-2 smoothed particle hydrodynamics code allows us to investigate the long-term evolution of the disk that fragments into several clumps. We find that the sum of all the cooling rates is less than the total heating rate after including the contribution from the compressional heating (pdV). The increasing cooling rate during the rapid increase of the molecular fraction is offset by the unavoidable heating due to gas contraction. We conclude that fragmentation occurs because H-2 cooling, the heating due to H-2 formation and compressional heating together set a density and temperature structure in the disk that favors fragmentation, not the chemothermal instability.