109 resultados para Nuclear fuels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The combustion synthesis has been utilized to prepare nanophased powders of cobalt spinel ferrite using ODH and glycine fuels. The product was characterized by X‐ray diffraction; Fourier transformed spectroscopy, scanning electron microscopy, UV‐Vis absorption etc. The XRD patterns reveal spinal cubic structure. SEM profiles show the product is porous, agglomeration, irregular in shape. The crystallite size was estimated using Scherer’s formula and W‐H plots and show nano in size (13 nm: ODH & 36 nm: Glycine). The UV‐Vis absorption shows at ∼430 nm in both the samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We measure hyperfine structure in the metastable P-3(2) state of Yb-173 and extract the nuclear magnetic octupole moment. We populate the state using dipole-allowed transitions through the P-3(1) and S-3(1) states. We measure frequencies of hyperfine transitions of the P-3(2) -> S-3(1) line at 770 nm using a Rb-stabilized ring cavity resonator with a precision of 200 kHz. Second-order corrections due to perturbations from the nearby P-3(1) and P-1(1) states are below 30 kHz. We obtain the hyperfine coefficients as A = -742.11(2) MHz and B = 1339.2(2) MHz, which represent a two orders-of-magnitude improvement in precision, and C = 0.54(2) MHz. From atomic structure calculations, we obtain the nuclear moments quadrupole Q = 2.46(12) b and octupole Omega = -34.4(21) b x mu(N). DOI: 10.1103/PhysRevA.87.012512

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the work on detailed characterization of effervescent spray of Jatropha and Pongamia pure plant oils. The spray characteristics of these biofuels are compared with those of diesel. Both macroscopic and microscopic spray characteristics at different injection pressures and gas-to-liquid ratio (GLR) have been studied. The particle/droplet imaging analysis (PDIA) technique along with direct imaging methods are used for the purpose of spray characterization. Due to their higher viscosity, pure plant oils showed poor atomization compared to diesel and a blend of diesel and pure plant oil at a given GLR. Pure plant oil sprays showed a lower spray cone angle when compared to diesel and blends at lower GLRs. However, the difference is not significant at higher GLRs. Droplet size measurements at 100 mm downstream of the exit orifice showed reduction in Sauter mean diameter (SMD) diameter with increase in GLR. A radial variation in the SMD is observed for the blend and pure plant oils. Pure oils showed a larger variation when compared to the blend. Spray unsteadiness has been characterized based on the image-to-image variation in the mean droplet diameter and fluctuations in the spray cone angle. Results showed that pure plant oil sprays are more unsteady at lower GLRs when compared to diesel and blend. A critical GLR is identified at which the spray becomes steady. The three regimes of spray operation, namely ``steady spray,'' ``pulsating spray,'' and ``spray and unbroken liquid jet'' are identified in the injection pressure-GLR parameter space for these pure plant oils. Two-phase flow imaging inside the exit orifice shows that for the pure plant oils, the flow is highly transient at low GLRs and the bubbly, slug, and annular two-phase flow regimes are all observed. However, at higher GLRs where the spray is steady, only the annular flow regime is observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar triazinium cationic species from vanadyl-assisted cyclization of 1-(2-thiazolylazo)-2-naphthol (H-TAN, 1), 1-(2-pyridylazo)-2-naphthol (H-PAN, 2), 2-(2'-thiazolylazo)-p-cresol (H-TAC, 3) and 6-(2'-thiazolylazo)- resorcinol (H-TAR, 5) were prepared and characterized. A dioxovanadium(V) species VO2(TAR)] (4) was also isolated. Compounds 1, 2 and 4 were structurally characterized. Both 1 and 2 have planar structures. Complex 4 has (VO3N2)-O-V coordination geometry. The cyclised triazinium compound forms a radical species within -0.06 to -0.29 V vs. SCE in DMF-0.1 M tetrabutylammonium perchlorate with a second response due to formation of an anionic species. A confocal microscopic study showed higher nuclear uptake for 1 having a fused thiazole moiety than 2 with a fused pyridine ring. The compounds showed a partial intercalative mode of binding to calf thymus DNA. Compound 1 showed plasmid DNA photo-cleavage activity under argon and photocytotoxicity in HeLa and MCF-7 cells with IC50 values of 15.1 and 3.4 mu M respectively in visible light of 400-700 nm, while being essentially non-toxic in the dark with IC50 values of 90.4 and 21.9 mu M. ATDDFT study was done to rationalize the experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report an experimental study of recently formulated entropic Leggett-Garg inequality (ELGI) by Usha Devi et al. Phys. Rev. A 87, 052103 (2013)]. This inequality places a bound on the statistical measurement outcomes of dynamical observables describing a macrorealistic system. Such a bound is not necessarily obeyed by quantum systems, and therefore provides an important way to distinguish quantumness from classical behavior. Here we study ELGI using a two-qubit nuclear magnetic resonance system. To perform the noninvasive measurements required for the ELGI study, we prepare the system qubit in a maximally mixed state as well as use the ``ideal negative result measurement'' procedure with the help of an ancilla qubit. The experimental results show a clear violation of ELGI by over four standard deviations. These results agree with the predictions of quantum theory. The violation of ELGI is attributed to the fact that certain joint probabilities are not legitimate in the quantum scenario, in the sense they do not reproduce all the marginal probabilities. Using a three-qubit system, we also demonstrate that three-time joint probabilities do not reproduce certain two-time marginal probabilities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The solution structure of the monomeric glutamine amidotransferase (GATase) subunit of the Methanocaldococcus janaschii (Mj) guanosine monophosphate synthetase (GMPS) has been determined using high-resolution nuclear magnetic resonance methods. Gel filtration chromatography and N-15 backbone relaxation studies have shown that the Mj GATase subunit is present in solution as a 21 kDa (188-residue) monomer. The ensemble of 20 lowest-energy structures showed root-mean-square deviations of 0.35 +/- 0.06 angstrom for backbone atoms and 0.8 +/- 0.06 angstrom for all heavy atoms. Furthermore, 99.4% of the backbone dihedral angles are present in the allowed region of the Ramachandran map, indicating the stereochemical quality of the structure. The core of the tertiary structure of the GATase is composed of a seven-stranded mixed beta-sheet that is fenced by five alpha-helices. The Mj GATase is similar in structure to the Pyrococcus horikoshi (Ph) GATase subunit. Nuclear magnetic resonance (NMR) chemical shift perturbations and changes in line width were monitored to identify residues on GATase that were responsible for interaction with magnesium and the ATPPase subunit, respectively. These interaction studies showed that a common surface exists for the metal ion binding as well as for the protein-protein interaction. The dissociation constant for the GATase-Mg2+ interaction has been found to be similar to 1 mM, which implies that interaction is very weak and falls in the fast chemical exchange regime. The GATase-ATPPase interaction, on the other hand, falls in the intermediate chemical exchange regime on the NMR time scale. The implication of this interaction in terms of the regulation of the GATase activity of holo GMPS is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultra-fine crystallites of Mn1-xZnxFe2O4 series (0 <= x <= 1) were synthesized through wet chemical co- precipitation method followed by calcination at 200 degrees C for 4 hours. Formation of ferrites was confirmed by X-ray diffraction, TEM selected area diffraction (SAD) and Fourier Transform Infra-red Spectroscopy (FTIR). Nanocrystallites of different compositions in the series were coated with biocompatible chitosan in order to investigate their possible application as contrast agent for magnetic resonance imaging (MRI). Chitosan coating examined by FTIR, revealed a strong bonding of chitosan molecules to the surface of the ferrite nanocrystallites. Spin-spin, tau(2) relaxivities of nuclear spins of hydrogen protons of the solutions for different ferrites were measured from concentration dependence of relaxation time by nuclear magnetic resonance (NMR). All the compositions of Mn1-xZnxFe2O4 series possess higher values of tau(2) relaxivity thus making them suitable as contrast agents for tau(2) weighted imaging by MRI.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear pore complexes (NPCs) are very selective filters that sit on the membrane of the nucleus and monitor the transport between the cytoplasm and the nucleoplasm. For the central plug of NPC two models have been suggested in the literature. The first suggests that the plug is a reversible hydrogel while the other suggests that it is a polymer brush. Here we propose a model for the transport of a protein through the plug, which is general enough to cover both the models. The protein stretches the plug and creates a local deformation, which together with the protein, we refer to as the bubble. We start with the free energy for creation of the bubble and consider its motion within the plug. The relevant coordinate is the center of the bubble which executes random walk. We find that for faster relaxation of the gel, the diffusion of the bubble is greater. (C) 2014 Elsevier-B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bentonite clay is identified as potential buffer in deep geological repositories (DGR) that store high level radioactive wastes (HLW) as the expansive clay satisfies the expected mechanical and physicochemical functions of the buffer material. In the deep geological disposal of HLW, iodine-129 is one of the significant nuclides, attributable to its long half-life (half life 1⁄4 1:7 × 107 years). However, the negative charge on the basal surface of bentonite particles precludes retention of iodide anions. To render the bentonite effective in retaining hazardous iodide species in DGR, improvement of the anion retention capacity of bentonite becomes imperative. The iodide retention capac-ity of bentonite is improved by admixing 10 and 20% Ag-kaolinite (Ag-K) with bentonite (B) on a dry mass basis. The present study produced Ag-kaolinite by heating silver nitrate-kaolinite mixes at 400°C. Marginal release of iodide retained by Ag-kaolinite occurred under extreme acidic (pH 1⁄4 2:5) and alkaline (pH 1⁄4 12:5) conditions. The swell pressure and iodide etention results of the B-Ag-K specimens bring out that mixing Ag-K with bentonite does not chemically modify the expansive clay; the mixing is physical in nature and Ag-K presence only contributes to iodide retention of the admixture. DOI: 10.1061/(ASCE)HZ.2153-5515.0000121. © 2012 American Society of Civil Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work considers how the properties of hydrogen bonded complexes, X-H center dot center dot center dot Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H center dot center dot center dot O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4-3.0 angstrom, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the onset of the neutron drip in high-density matter in the presence of a magnetic field. It has been found that, for systems having only protons and electrons, in the presence of a magnetic field greater than or similar to 10(15) G, neutronization occurs at a density that is at least an order of magnitude higher compared to that in a nonmagnetic system. In a system with heavier ions, the effect of the magnetic field, however, starts arising at a much higher field, greater than or similar to 10(17) G. These results may have important implications for high-magnetic-field neutron stars and white dwarfs and, in general, in nuclear astrophysics when the system is embedded within a strong magnetic field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here, we show the binding results of a leguminosae lectin, winged bean basic agglutinin (WBA I) to N-trifluoroacetylgalactosamine (NTFAGalN), methyl-alpha-N-trifluoroacetylgalactosamine (Me alpha NTFAGalN) and methyl-beta-tifluoroacetylgalactosamine (Me beta NTFAGalN) using (19) F NMR spectroscopy. No chemical shift difference between the free and bound states for NTFAGalN and Me beta NTFAGalN, and 0.01-ppm chemical shift change for Me alpha NTFAGalN, demonstrate that the Me alpha NTFAGalN has a sufficiently long residence time on the protein binding site as compared to Me beta NTFAGalN and the free anomers of NTFAGalN. The sugar anomers were found in slow exchange with the binding site of agglutinin. Consequently, we obtained their binding parameters to the protein using line shape analyses. Aforementioned analyses of the activation parameters for the interactions of these saccharides indicate that the binding of alpha and beta anomers of NTFAGalN and Me alpha NTFAGalN is controlled enthalpically, while that of Me beta NTFAGalN is controlled entropically. This asserts the sterically constrained nature of the interaction of the Me beta NTFAGalN with WBA I. These studies thus highlight a significant role of the conformation of the monosaccharide ligands for their recognition by WBA I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified solution combustion approach was applied in the synthesis of nanosize SrFeO3-delta (SFO) using single as well as mixture of citric acid, oxalic acid, and glycine as fuels with corresponding metal nitrates as precursors. The synthesized and calcined powders were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis and derivative thermogravimetric analysis (TG-DTG), scanning electron microscopy, transmission electron microscopy, N-2 physisorption methods, and acidic strength by n-butyl amine titration methods. The FT-IR spectra show the lower-frequency band at 599 cm(-1) corresponds to metal-oxygen bond (possible Fe-O stretching frequencies) vibrations for the perovskite-structure compound. TG-DTG confirms the formation temperature of SFO ranging between 850-900 degrees C. XRD results reveal that the use of mixture of fuels in the preparation has effect on the crystallite size of the resultant compound. The average particle size of the samples prepared from single fuels as determined from XRD was similar to 50-35 nm, whereas for samples obtained from mixture of fuels, particles with a size of 30-25 nm were obtained. Specifically, the combination of mixture of fuels for the synthesis of SFO catalysts prevents agglomeration of the particles, which in turn leads to decrease in crystallite size and increase in the surface area of the catalysts. It was also observed that the present approach also impacted the catalytic activity of the SFO in the catalytic reduction of nitrobenzene to azoxybenzene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum(II) complexes Pt(pap)(an-cat)] (1) and Pt(pap)(py-cat)] (2) with 2-(phenylazo)pyridine (pap), 4-2-(anthracen-9-ylmethylene)amino]ethyl]benzene-1,2-diol (H(2)an-cat), and 4-2-(pyren-1-ylmethylene)amino]ethyl]benzene-1,2-diol (H2py-cat) were prepared, and their photoinduced cytotoxicity was studied. The complexes were found to release catecholate ligand in the presence of excess glutathione (GSH), resulting in cellular toxicity in the cancer cells. The catecholate complex Pt(pap)(cat)] (3) was prepared and used as a control. Complex 3, which is structurally characterized by X-ray crystallography, has platinum(II) in a distorted square-planar geometry. The complexes are redox-active, showing responses near 0.6 and 1.0 V versus SCE in N,N-dimethylformamide/0.1 M tetrabutylammonium perchlorate corresponding to a two-step catechol oxidation process and at -0.3 and -1.3 V for reduction of the pap ligand. Complex 1 showed remarkable light-induced cytotoxicity in HaCaT (human skin keratinocytes) and MCF-7 (human breast cancer) cells, giving IC50 value of similar to 5 mu M in visible light of 400-700 nm and >40 mu M in the dark. The 2',7'-dichlorofluorescein diacetate (DCFDA) assay showed the generation of reactive oxygen species (ROS), which seems to trigger apoptosis, as is evident from the annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) assay. The fluorescence microscopic images showed significant nuclear localization of the complexes and free ligands. A mechanistic study revealed possible reduction of the coordinated azo bond of pap by cellular GSH, releasing the catecholate ligand and resulting in remarkable photochemotherapeutic action of the complexes.