101 resultados para Non-polarizable Water Models
Resumo:
Motivated by observations of the mean state of tropical precipitable water (PW), a moist, first baroclinic mode, shallow-water system on an equatorial beta-plane with a background saturation profile that depends on latitude and longitude is studied. In the presence of a latitudinal moisture gradient, linear analysis of the non-rotating problem reveals large-scale, symmetric, eastward and westward propagating unstable modes. The introduction of a zonal moisture gradient breaks the east-west symmetry of the unstable modes. The effects of rotation are then included by numerically solving the resulting eigenvalue problem on an equatorial beta-plane. With a purely meridional moisture gradient, the system supports large-scale, low-frequency, eastward and westward moving neutral modes. Some of the similarities, and some of the discrepancies of these modes with intraseasonal tropical waves are pointed out. Finally, a zonal moisture gradient in the presence of rotation renders some of the aforementioned neutral modes unstable. In particular, according to observations of large-scale, low-frequency tropical variability, it is seen that regions where the background saturation profile increases (decreases) to the east favour eastward (westward) moving moist modes.
Resumo:
Using numerical diagonalization we study the crossover among different random matrix ensembles (Poissonian, Gaussian orthogonal ensemble (GOE), Gaussian unitary ensemble (GUE) and Gaussian symplectic ensemble (GSE)) realized in two different microscopic models. The specific diagnostic tool used to study the crossovers is the level spacing distribution. The first model is a one-dimensional lattice model of interacting hard-core bosons (or equivalently spin 1/2 objects) and the other a higher dimensional model of non-interacting particles with disorder and spin-orbit coupling. We find that the perturbation causing the crossover among the different ensembles scales to zero with system size as a power law with an exponent that depends on the ensembles between which the crossover takes place. This exponent is independent of microscopic details of the perturbation. We also find that the crossover from the Poissonian ensemble to the other three is dominated by the Poissonian to GOE crossover which introduces level repulsion while the crossover from GOE to GUE or GOE to GSE associated with symmetry breaking introduces a subdominant contribution. We also conjecture that the exponent is dependent on whether the system contains interactions among the elementary degrees of freedom or not and is independent of the dimensionality of the system.
Resumo:
Vernacular dwellings are well-suited climate-responsive designs that adopt local materials and skills to support comfortable indoor environments in response to local climatic conditions. These naturally-ventilated passive dwellings have enabled civilizations to sustain even in extreme climatic conditions. The design and physiological resilience of the inhabitants have coevolved to be attuned to local climatic and environmental conditions. Such adaptations have perplexed modern theories in human thermal-comfort that have evolved in the era of electricity and air-conditioned buildings. Vernacular local building elements like rubble walls and mud roofs are given way to burnt brick walls and reinforced cement concrete tin roofs. Over 60% of Indian population is rural, and implications of such transitions on thermal comfort and energy in buildings are crucial to understand. Types of energy use associated with a buildings life cycle include its embodied energy, operational and maintenance energy, demolition and disposal energy. Embodied Energy (EE) represents total energy consumption for construction of building, i.e., embodied energy of building materials, material transportation energy and building construction energy. Embodied energy of building materials forms major contribution to embodied energy in buildings. Operational energy (OE) in buildings mainly contributed by space conditioning and lighting requirements, depends on the climatic conditions of the region and comfort requirements of the building occupants. Less energy intensive natural materials are used for traditional buildings and the EE of traditional buildings is low. Transition in use of materials causes significant impact on embodied energy of vernacular dwellings. Use of manufactured, energy intensive materials like brick, cement, steel, glass etc. contributes to high embodied energy in these dwellings. This paper studies the increase in EE of the dwelling attributed to change in wall materials. Climatic location significantly influences operational energy in dwellings. Buildings located in regions experiencing extreme climatic conditions would require more operational energy to satisfy the heating and cooling energy demands throughout the year. Traditional buildings adopt passive techniques or non-mechanical methods for space conditioning to overcome the vagaries of extreme climatic variations and hence less operational energy. This study assesses operational energy in traditional dwelling with regard to change in wall material and climatic location. OE in the dwellings has been assessed for hot-dry, warm humid and moderate climatic zones. Choice of thermal comfort models is yet another factor which greatly influences operational energy assessment in buildings. The paper adopts two popular thermal-comfort models, viz., ASHRAE comfort standards and TSI by Sharma and Ali to investigate thermal comfort aspects and impact of these comfort models on OE assessment in traditional dwellings. A naturally ventilated vernacular dwelling in Sugganahalli, a village close to Bangalore (India), set in warm - humid climate is considered for present investigations on impact of transition in building materials, change in climatic location and choice of thermal comfort models on energy in buildings. The study includes a rigorous real time monitoring of the thermal performance of the dwelling. Dynamic simulation models validated by measured data have also been adopted to determine the impact of the transition from vernacular to modern material-configurations. Results of the study and appraisal for appropriate thermal comfort standards for computing operational energy has been presented and discussed in this paper. (c) 2014 K.I. Praseeda. Published by Elsevier Ltd.
Resumo:
Developments in the statistical extreme value theory, which allow non-stationary modeling of changes in the frequency and severity of extremes, are explored to analyze changes in return levels of droughts for the Colorado River. The transient future return levels (conditional quantiles) derived from regional drought projections using appropriate extreme value models, are compared with those from observed naturalized streamflows. The time of detection is computed as the time at which significant differences exist between the observed and future extreme drought levels, accounting for the uncertainties in their estimates. Projections from multiple climate model-scenario combinations are considered; no uniform pattern of changes in drought quantiles is observed across all the projections. While some projections indicate shifting to another stationary regime, for many projections which are found to be non-stationary, detection of change in tail quantiles of droughts occurs within the 21st century with no unanimity in the time of detection. Earlier detection is observed in droughts levels of higher probability of exceedance. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Significant changes are reported in extreme rainfall characteristics over India in recent studies though there are disagreements on the spatial uniformity and causes of trends. Based on recent theoretical advancements in the Extreme Value Theory (EVT), we analyze changes in extreme rainfall characteristics over India using a high-resolution daily gridded (1 degrees latitude x 1 degrees longitude) dataset. Intensity, duration and frequency of excess rain over a high threshold in the summer monsoon season are modeled by non-stationary distributions whose parameters vary with physical covariates like the El-Nino Southern Oscillation index (ENSO-index) which is an indicator of large-scale natural variability, global average temperature which is an indicator of human-induced global warming and local mean temperatures which possibly indicate more localized changes. Each non-stationary model considers one physical covariate and the best chosen statistical model at each rainfall grid gives the most significant physical driver for each extreme rainfall characteristic at that grid. Intensity, duration and frequency of extreme rainfall exhibit non-stationarity due to different drivers and no spatially uniform pattern is observed in the changes in them across the country. At most of the locations, duration of extreme rainfall spells is found to be stationary, while non-stationary associations between intensity and frequency and local changes in temperature are detected at a large number of locations. This study presents the first application of nonstationary statistical modeling of intensity, duration and frequency of extreme rainfall over India. The developed models are further used for rainfall frequency analysis to show changes in the 100-year extreme rainfall event. Our findings indicate the varying nature of each extreme rainfall characteristic and their drivers and emphasize the necessity of a comprehensive framework to assess resulting risks of precipitation induced flooding. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
The ability of Coupled General Circulation Models (CGCMs) participating in the Intergovernmental Panel for Climate Change's fourth assessment report (IPCC AR4) for the 20th century climate (20C3M scenario) to simulate the daily precipitation over the Indian region is explored. The skill is evaluated on a 2.5A degrees x 2.5A degrees grid square compared with the Indian Meteorological Department's (IMD) gridded dataset, and every GCM is ranked for each of these grids based on its skill score. Skill scores (SSs) are estimated from the probability density functions (PDFs) obtained from observed IMD datasets and GCM simulations. The methodology takes into account (high) extreme precipitation events simulated by GCMs. The results are analyzed and presented for three categories and six zones. The three categories are the monsoon season (JJASO - June to October), non-monsoon season (JFMAMND - January to May, November, December) and for the entire year (''Annual''). The six precipitation zones are peninsular, west central, northwest, northeast, central northeast India, and the hilly region. Sensitivity analysis was performed for three spatial scales, 2.5A degrees grid square, zones, and all of India, in the three categories. The models were ranked based on the SS. The category JFMAMND had a higher SS than the JJASO category. The northwest zone had higher SSs, whereas the peninsular and hilly regions had lower SS. No single GCM can be identified as the best for all categories and zones. Some models consistently outperformed the model ensemble, and one model had particularly poor performance. Results show that most models underestimated the daily precipitation rates in the 0-1 mm/day range and overestimated it in the 1-15 mm/day range.
Bayesian parameter identification in dynamic state space models using modified measurement equations
Resumo:
When Markov chain Monte Carlo (MCMC) samplers are used in problems of system parameter identification, one would face computational difficulties in dealing with large amount of measurement data and (or) low levels of measurement noise. Such exigencies are likely to occur in problems of parameter identification in dynamical systems when amount of vibratory measurement data and number of parameters to be identified could be large. In such cases, the posterior probability density function of the system parameters tends to have regions of narrow supports and a finite length MCMC chain is unlikely to cover pertinent regions. The present study proposes strategies based on modification of measurement equations and subsequent corrections, to alleviate this difficulty. This involves artificial enhancement of measurement noise, assimilation of transformed packets of measurements, and a global iteration strategy to improve the choice of prior models. Illustrative examples cover laboratory studies on a time variant dynamical system and a bending-torsion coupled, geometrically non-linear building frame under earthquake support motions. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Photocatalytic degradation of estriol (E3) in an aqueous medium was investigated in the presence of TiO2 microcrystallized glass plates. To begin with, transparent glasses associated with the composition 0.4BaO-0.4TiO(2)-B2O3 (BTBO) were fabricated by the conventional melt-quench technique and subsequently subjected to controlled heat treatment at an appropriate temperature to grow anatase TiO2 microcrystals in the glass matrix. The fabricated samples were subjected to differential scanning calorimetry. X-ray diffraction and scanning electron microscopy to obtain thermal, structural and microstructural details. The photocatalytic activity of glass samples for estriol degradation was monitored by fluorescence spectroscopy. The limit of detection for estriol using fluorescence spectroscopy was analyzed. The results showed that microcrystallized TiO2 glass composites have more photocatalytic activity than as quenched glass. The degradation rate coefficient of microcrystallized TiO2 glass composite (334.54 min(-1) m(-2)) was found to be ten times larger than that of the as-quenched BTBO glasses (37.74 min(-1) m(-2)) implying that the anatase phase of TiO2 in BTBO glasses was responsible for high photocatalytic activity of estriol degradation. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
Eleven general circulation models/global climate models (GCMs) - BCCR-BCCM2.0, INGV-ECHAM4, GFDL2.0, GFDL2.1, GISS, IPSL-CM4, MIROC3, MRI-CGCM2, NCAR-PCMI, UKMO-HADCM3 and UKMO-HADGEM1 - are evaluated for Indian climate conditions using the performance indicator, skill score (SS). Two climate variables, temperature T (at three levels, i.e. 500, 700, 850 mb) and precipitation rate (Pr) are considered resulting in four SS-based evaluation criteria (T500, T700, T850, Pr). The multicriterion decision-making method, technique for order preference by similarity to an ideal solution, is applied to rank 11 GCMs. Efforts are made to rank GCMs for the Upper Malaprabha catchment and two river basins, namely, Krishna and Mahanadi (covered by 17 and 15 grids of size 2.5 degrees x 2.5 degrees, respectively). Similar efforts are also made for India (covered by 73 grid points of size 2.5 degrees x 2.5 degrees) for which an ensemble of GFDL2.0, INGV-ECHAM4, UKMO-HADCM3, MIROC3, BCCR-BCCM2.0 and GFDL2.1 is found to be suitable. It is concluded that the proposed methodology can be applied to similar situations with ease.
Resumo:
Climate change is most likely to introduce an additional stress to already stressed water systems in developing countries. Climate change is inherently linked with the hydrological cycle and is expected to cause significant alterations in regional water resources systems necessitating measures for adaptation and mitigation. Increasing temperatures, for example, are likely to change precipitation patterns resulting in alterations of regional water availability, evapotranspirative water demand of crops and vegetation, extremes of floods and droughts, and water quality. A comprehensive assessment of regional hydrological impacts of climate change is thus necessary. Global climate model simulations provide future projections of the climate system taking into consideration changes in external forcings, such as atmospheric carbon-dioxide and aerosols, especially those resulting from anthropogenic emissions. However, such simulations are typically run at a coarse scale, and are not equipped to reproduce regional hydrological processes. This paper summarizes recent research on the assessment of climate change impacts on regional hydrology, addressing the scale and physical processes mismatch issues. Particular attention is given to changes in water availability, irrigation demands and water quality. This paper also includes description of the methodologies developed to address uncertainties in the projections resulting from incomplete knowledge about future evolution of the human-induced emissions and from using multiple climate models. Approaches for investigating possible causes of historically observed changes in regional hydrological variables are also discussed. Illustrations of all the above-mentioned methods are provided for Indian regions with a view to specifically aiding water management in India.
Resumo:
This paper presents exploratory and statistical analyses of the activity-travel behaviour of non-workers in Bangalore city in India. The study summarises the socio-demographic characteristics as well as the activity-travel behaviour of non-workers using a primary activity-travel survey data collected by the authors. Where possible, the research also compares the analysis findings with the case studies on activity-travel behaviour of non-workers, carried out in developed and developing countries. This gives an opportunity to understand the differences/similarities in the activity-travel behaviour of non-workers across diverse socio-cultural settings. The preliminary exploratory analysis shed light on the differences in activity participation, trip chaining, time-of-day preference for trip departure, and mode use behaviour of non-workers in Bangalore city. Statistical models were developed for investigating the effects of individual and household socio-demographics, land use parameters, and travel context attributes on activity participation, trip chaining, time-of-day choice, and mode choice decisions of non-workers. A few important results of the analysis are the influence of viewing television at home on out-of-home activity participation and trip-chaining behaviour, and the impact of in-home maintenance activity duration on time-of-day choice. Further, based on the findings of the initial analyses, an attempt has been made in this study to develop an integrated model that links time allocation, time-of-day choice, and trip chaining behaviour of non-workers. The study also discusses the implications of the research findings for transportation planning and policy for Bangalore city. (C) 2015 Elsevier Ltd. All rights reserved.