431 resultados para Nickel-titanium alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Ni(NCS)2(CHsN3S)2], Mr = 356.7, monoclinic, P21/c , a = 5-297 (1), b = 7.869 (1), c - 16-078 (2) A,/3 = 91.53 (1) °, V-= 669.9 A 3, Z= 2, Om = 1"76, Dx = 1"771 g cm -3, A(Mo Ka) = 0-71069 ]k, /.~ = 19"9 cm-l, F(000) = 364, T = 295 K, final R = 0.026 for 1576 significant [F > 10g(F)] reflections. The complex lies on a crystallographic centre of symmetry. The Ni atom is octahedrally coordinated by two thiocyanates (through N atoms) and by two thiosemicarbazide molecules (through hydrazinic N and S atoms). The crystal structure is stabilized by N--H...S hydrogen bonds. Early work on this structure [Garaj & Dunaj-Jurco (1968). Chem. Commun. p. 518] used photographic data and was refined to R = 0-13 for 512 reflections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A microbeam testing geometry is designed to study the variation in fracture toughness across a compositionally graded NiAl coating on a superalloy substrate. A bi-material analytical model of fracture is used to evaluate toughness by deconvoluting load-displacement data generated in a three-point bending test. It is shown that the surface layers of a diffusion bond coat can be much more brittle than the interior despite the fact that elastic modulus and hardness do not display significant variations. Such a gradient in toughness allows stable crack propagation in a test that would normally lead to unstable fracture in a homogeneous, brittle material. As the crack approaches the interface, plasticity due to the presence of Ni3Al leads to gross bending and crack bifurcation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silicon particles standing proud on aluminium-silicon alloy surfaces provide protection in tribology. Permanent sinking of such particles into the matrix under load can be deleterious. The mechanical response of the alloy to nano-indentation of single silicon particles embedded in the matrix is explored. A nominal critical pressure required to plastically deform the matrix to permanently embed the particle is determined experimentally. Within a framework suggested by two-dimensional models of plastic response to indentation, a probable correlation is established between the normal mean pressure required to cause permanent sinking of silicon particles and a factor which relates the relevant particle dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crack loading and crack extension in pseudoelastic binary NiTi shape memory alloy (SMA) miniature compact tension (CT) specimens with 50.7 at.% Ni (austenitic, pseudoelastic) was investigated using infrared (IR) thermography during in situ loading and unloading. IR thermographic measurements allow for the observation of heat effects associated with the stress-induced transformation of martensite from B2 to BIT during loading and the reverse transformation during unloading. The results are compared with optical images and discussed in terms of the crack growth mechanisms in pseudoelastic NiTi SMAs. Direct experimental evidence is presented which shows that crack growth occurs into a stress-induced martensitic microstructure, which immediately retransforms to austenite in the wake of the crack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anomalous variation in the experimental elastic modulus, E, of Ti-6Al-4V-xB (with x up to 0.55 wt.%) is reported. Volume fractions and moduli of the constituent phases were measured using microscopy and nanoindentation,respectively. These were used in simple micromechanical models to examine if the E values could be rationalized. Experimental E values higher than the upper bound estimates suggest complex interplay between microstructural modifications, induced by the addition of B, and properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nanoindentation hardness of individual shear bands in a Zr-based metallic glass was investigated in order to obtain a better understanding of how shear band plasticity is influenced by non-crystalline defects. The results clearly showed that the shear band hardness in both as-cast and structurally relaxed samples is much lower than the respective hardness of undeformed region. Interestingly, inter-band matrix also exhibited lower hardness than undeformed region. The results are discussed in terms of the influence of structural state and the prevailing mechanism of plastic deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new 5-aminoisophthalates of cobalt and nickel have been prepared employing hydro/solvothermal methods: [Co2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (I), [Ni2(C8H5NO4)2(C4H4N2)(H2O)2]·3H2O (II), [Co2(H2O)(μ3-OH)2(C8H5NO4)] (III), and [Ni2(H2O)(μ3-OH)2(C8H5NO4)] (IV). Compounds I and II are isostructural, having anion-deficient CdCl2 related layers bridged by a pyrazine ligand, giving rise to a bilayer arrangement. Compounds III and IV have one-dimensional M−O(H)−M chains connected by the 5-aminoisophthalate units forming a three-dimensional structure. The coordinated as well as the lattice water molecules of I and II could be removed and inserted by simple heating−cooling cycles under the atmospheric conditions. The removal of the coordinated water molecule is accompanied by changes in the coordination environment around the M2+ (M = Co, Ni) and color of the samples (purple to blue, Co; green to dark yellow, Ni). This change has been examined by a variety of techniques that include in situ single crystal to single crystal transformation studies and in situ IR and UV−vis spectroscopic studies. Magnetic studies indicate antiferromagnetic behavior in I and II, a field-induced magnetism in III, and a canted antiferromagnetic behavior in IV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The β-phase aging response of Cu–Al–Ni single crystal shape memory alloys (SMAs) within the temperature range of 473–573 K has been investigated. Alloys in austenitic (Cu–14.1Al–4Ni wt.%, alloy A) and martensitic (Cu–13.4Al–4Ni wt.%, alloy M) conditions at room temperature were considered. Aged samples show presence of β1′ and γ1′ martensites in both the alloys and formation of γ2 precipitates in the alloy A. The differential scanning calorimetry (DSC) thermograms of the aged samples show increase in transformation temperatures as well as transformation hysteresis with aging. Dynamic mechanical analysis (DMA) was conducted on both the alloys to ascertain the role of precipitates and martensitic transition on tan δ, which characterizes the damping behaviour of the material. With aging, a steady decrease in tan δ value was observed in both the alloys, which was attributed to the decrease in the number of interfaces per unit area with increasing aging temperature. Moreover, in alloy A, as the volume fraction of precipitate increases with aging, the movement of martensitic interfaces is restricted causing a decreased tan δ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

P-Nickel hydroxide comprises a long range periodic arrangement of atoms with a stacking sequence of AC AC AC-having an ideal composition Ni(OH)(2). Variation in the preparative conditions can lead to the changes in the stacking sequence (AC AC BA CB AC AC or AC AC AB AC AC) This type of variation in stacking sequence can result in the formation of stacking fault in nickel hydroxide. The stability of the stacking fault depends on the free energy content of the sample. Stacking faults in nickel hydroxide is essential for better electrochemical activity. Also there are reports correlating particle size to the better electrochemical activity. Here we present the effect of crystallite size on the stacking faulted nickel hydroxide samples. The electrochemical performance of stacking faulted nickel hydroxide with small crystallite size exchanges 0.8e/Ni, while the samples with larger crystallite size exchange 0.4e/Ni. Hence a right combination of crystallite size and stacking fault content has to be controlled for good electrochemical activity of nickel hydroxide. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Formation of nanocrystalline TiN at low temperatures was demonstrated by combining Pulsed Laser Deposition (PLD) and ion implantation techniques. The Ti films of nominal thickness similar to 250 nm were deposited at a substrate temperature of 200 degrees C by ablating a high pure titanium target in UHV conditions using a nanosecond pulsed Nd:YAG laser operating at 1064 nm. These films were implanted with 100 keV N+ ions with fluence ranging from 1.0 x 10(16) ions/cm(2) to 1.0 x 10(17) ions/cm(2). The structural, compositional and morphological evolutions were tracked using Transmission Electron Microscopy (TEM), Secondary Ion Mass Spectrometry (SIMS) and Atomic Force Microscopy (AFM), respectively. TEM analysis revealed that the as-deposited titanium film is an fcc phase. With increasing ion fluence, its structure becomes amorphous phase before precipitation of nanocrystalline fcc TiN phase. Compositional depth profiles obtained from SIMS have shown the extent of nitrogen concentration gradient in the implantation zone. Both as-deposited and ion implanted films showed much higher hardness as compared to the bulk titanium. AFM studies revealed a gradual increase in surface roughness leading to surface patterning with increase in ion fluence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The standard free energy of formation of titanium boride (TiB2) Was measured by the Electro Motive Force (EMF) method (by using yttria doped thoria (YDT) as the solid electrolyte). Two galvanic cells viz. Cell (I): Pt, TiB2 (s), TiO2 (s), B (s) vertical bar YDT vertical bar NiO (s), Ni (s), Pt and cell (II): Pt, TiB2 (s), TiO2 (s), B (s) vertical bar YDT vertical bar FeO (s). Fe (s), Pt were constructed in order to determine the Delta(f)G degrees, of TiB2. Enthalpy increments on TiB2 were measured by using inverse drop calorimetry over the temperature range 583-1769 K. The heat capacity, entropy and the free energy function have been derived from these experimental data in the temperature range 298-1800 K. The mean value of the standard enthalpy of formation of TiB2 (Delta H-f(298)degrees (TiB2)) was obtained by combining these Delta(f)G degrees, values and the free energy functions of TiB2 derived from the drop calorimetry data. The mean values of Delta H-f(298)degrees (TiB2) derived from the Delta(f)G degrees, data obtained from cell I and II were -322 +/- 1.2 kJ mol(-1) and -323.3 +/- 2.1 kJ mol(-1), respectively. These values were found to be in very good agreement with the assessed data. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive Pulsed Laser Deposition is a single step process wherein the ablated elemental metal reacts with a low pressure ambient gas to form a compound. We report here a Secondary Ion Mass Spectrometry based analytical methodology to conduct minimum number of experiments to arrive at optimal process parameters to obtain high quality TiN thin film. Quality of these films was confirmed by electron microscopic analysis. This methodology can be extended for optimization of other process parameters and materials. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A conventional magnesium alloy, AZ91D, and two creep resistant magnesium alloys, developed for powertrain applications, MRI 153M and MRI 230D, are prepared by high pressure die casting. These alloys are tested for their creep behaviour in the continuous manner, as is the Current practice, and in the interrupted manner, which represents the real life Situation more closely. It is observed that the interrupted creep tests give rise to a primary creep appearing at the beginning of each cycle resulting in a higher average strain rate than that encountered in the continuous creep tests. Further, the shorter the cycle time, higher is the average strain rate in the interrupted creep tests. A higher average strain rate will give rise to a higher strain over the same period. This is attributed to the recovery taking place during the cooling and heating between two cycles. The effect of additional precipitation during interrupted creep tests depends on the nature of the precipitates. The additional precipitation of beta phase during the cooling and heating between two cycles increases the steady state strain rate in the AZ91D and MRI 153M alloys. whereas the additional precipitation of C36 phase during the cooling and heating between two cycles decreases the steady state strain rate in the MRI 230D alloy. (C) 2009 Elsevier B.V. All rights reserved.