97 resultados para Neurovascular coupling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomically thin two dimensional (2D) layered materials have emerged as a new class of material for nanoelectromechanical systems (NEMS) due to their extraordinary mechanical properties and ultralow mass density. Among them, graphene has been the material of choice for nanomechanical resonator. However, recent interest in 2D chalcogenide compounds has also spurred research in using materials such as MoS2 for the NEMS applications. As the dimensions of devices fabricated using these materials shrink down to atomically thin membrane, strain and nonlinear effects have become important. A clear understanding of the nonlinear effects and the ability to manipulate them is essential for next generation sensors. Here, we report on all electrical actuation and detection of few-layer MoS2 resonator. The ability to electrically detect multiple modes and actuate the modes deep into the nonlinear regime enables us to probe the nonlinear coupling between various vibrational modes. The modal coupling in our device is strong enough to detect three distinct internal resonances. (C) 2015 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We evaluate the contribution of chiral fermions in d = 2, 4, 6, chiral bosons, a chiral gravitino like theory in d = 2 and chiral gravitinos in d = 6 to all the leading parity odd transport coefficients at one loop. This is done by using finite temperature field theory to evaluate the relevant Kubo formulae. For chiral fermions and chiral bosons the relation between the parity odd transport coefficient and the microscopic anomalies including gravitational anomalies agree with that found by using the general methods of hydrodynamics and the argument involving the consistency of the Euclidean vacuum. For the gravitino like theory in d = 2 and chiral gravitinos in d = 6, we show that relation between the pure gravitational anomaly and parity odd transport breaks down. From the perturbative calculation we clearly identify the terms that contribute to the anomaly polynomial, but not to the transport coefficient for gravitinos. We also develop a simple method for evaluating the angular integrals in the one loop diagrams involved in the Kubo formulae. Finally we show that charge diffusion mode of an ideal 2 dimensional Weyl gas in the presence of a finite chemical potential acquires a speed, which is equal to half the speed of light.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tetrabutyl ammonium iodide (TBAI) catalyzed alpha-aminoxylation of ketones using aq. TBHP as an oxidant has been accomplished. We have shown that the CDC (cross dehydrogenative coupling) reactions of ketones with N-hydroxyimidates such as N-hydroxysuccinimide (NHSI), N-hydroxyphthalimide (NHPI), N-hydroxybenzotriazole (HOBt) and 1-hydroxy-7-azabenzotriazole (HOAt) lead to the corresponding oxygenated products in good to moderate yields. The application of this method has been demonstrated by transforming a few coupled products into synthetically useful intermediates and products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinematical distributions of decay products of the top quark carry information on the polarisation of the top as well as on any possible new physics in the decay of the top quark. We construct observables in the form of asymmetries in the kinematical distributions to probe their effects. Charged-lepton angular distributions in the decay are insensitive to anomalous couplings to leading order. Hence these can be a robust probe of top polarisation. However, these are difficult to measure in the case of highly boosted top quarks as compared to energy distributions of decay products. These are then sensitive, in general, to both top polarisation and top anomalous couplings. We compare various asymmetries for their sensitivities to the longitudinal polarisation of the top quark as well as to possible new physics in the Wtb vertex, paying special attention to the case of highly boosted top quarks. We perform a chi(2) analysis to determine the regions in the plane of longitudinal polarisation of the top quark and the couplings of the Wtb vertex constrained by different combinations of the asymmetries. Moreover, we find that the use of observables sensitive to the longitudinal top polarisation can add to the sensitivity to which the Wtb vertex can be probed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron-based superconductors have been found to exhibit an intimate interplay of orbital, spin, and lattice degrees of freedom, dramatically affecting their low-energy electronic properties, including superconductivity. Albeit the precise pairing mechanism remains unidentified, several candidate interactions have been suggested to mediate the superconducting pairing, both in the orbital and in the spin channel. Here, we employ optical spectroscopy (OS), angle-resolved photoemission spectroscopy (ARPES), ab initio band-structure, and Eliashberg calculations to show that nearly optimally doped NaFe0.978Co0.022As exhibits some of the strongest orbitally selective electronic correlations in the family of iron pnictides. Unexpectedly, we find that the mass enhancement of itinerant charge carriers in the strongly correlated band is dramatically reduced near the Gamma point and attribute this effect to orbital mixing induced by pronounced spin-orbit coupling. Embracing the true band structure allows us to describe all low-energy electronic properties obtained in our experiments with remarkable consistency and demonstrate that superconductivity in this material is rather weak and mediated by spin fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using in situ Raman scattering from phosphorene channel in an electrochemically top-gated field effect transistor, we show that phonons with A(g) symmetry depend much more strongly on concentration of electrons than that of holes, wheras phonons with B-g symmetry are insensitive to doping. With first-principles theoretical analysis, we show that the observed electon-hole asymmetry arises from the radically different constitution of its conduction and valence bands involving pi and sigma bonding states respectively, whose symmetry permits coupling with only the phonons that preserve the lattice symmetry. Thus, Raman spectroscopy is a non-invasive tool for measuring electron concentration in phosphorene-based nanoelectronic devices.