412 resultados para Multilayer Structure
Resumo:
The three isomeric cresols were subjected to the all-valence-electron CNDO/2 andPPP-CI calculations. Results from this study were used: (i) to compare the electronic structures of these isomers vis-Ã-vis parent compounds-phenol and toluene, (ii) to obtain a quantitative picture of their chemical reactivities and electronic absorption spectra. Using the sgr-core charges derived from CNDO/2 calculations and subsequently revising the valence-state ionisation potential and one-center-two-electron repulsion integrals, thePPP-CI calculations were performed on the title compounds according toNishimoto andForster scheme. In these calculations the pseudo-unsaturated nature of the methyl group has been given due consideration. In spectral assignment, compared to the conventionalPPP approach, the CNDO/2-basedPPP-CI method gave a better agreement with the experimental data.
Resumo:
The ability of various synthetic peptide analogs of. Formyl-Met-Leu-Phe to induce chemotaxis in bull sperm is compared using an inverted capillary assay. The formyl group is essential for chemotactic activity and corresponding t-butyloxycarbonyl tripeptides are inactive. Sequence analogs, Formyl-Met-Phe-Leu, Formyl-Leu-Met-Phe and Formyl-Leu-Phe-Met are active. Replacement of Met and Leu by Pro does not diminish activity. Formyl-Met-Leu-Phe-NH2 is active suggesting that electrostatic interactions involving the carboxyl group may be unimportant in receptor interactions. The studies establish the importance of an amino terminal formyl group and a sequence of at least three hydrophobic residues, for inducing sperm chemotaxis.
Resumo:
We demonstrate the aptitude of supramolecular hydrogel formation using simple bile acid such as lithocholic acid in aqueous solution in the presence of various dimeric or oligomeric amines. By variation of the choice of the amines in such mixtures the gelation properties could be modulated. However, the replacement of lithocholic acid (LCA) by cholic acid or deoxycholic acid resulted in no hydrogel formation. FT-IR studies confirm that the carboxylate and ammonium residues of the two components are involved in the salt (ion-pair) formation. This promotes further assembly of the components reinforced by a continuous hydrogen bonded network leading to gelation. Electron microscopy shows the morphology of the internal organization of gels of two component systems which also depends significantly on the amine part. Variation of the amine component from the simple 1,2-ethanediamine (EDA) to oligomeric amines in such gels of lithocholic acid changes the morphology of the assembly from long one-dimensional nanotubes to three-dimensional complex structures. Single crystal X-ray diffraction analysis with one of the amine-LCA complexes suggested the motif of fiber formation where the amines interact with the carboxylate and hydroxyl moieties through electrostatic forces and hydrogen bonding. From small angle neutron scattering study, it becomes clear that the weak gel from LCA-EDA shows scattering oscillation due to the presence of non-interacting nanotubules while for gels of LCA with oligomeric amines the individual fibers come together to form complex three-dimensional organizations of higher length scale. The rheological properties of this class of two component system provide clear evidence that the flow behavior can be modulated varying the acid-amine ratio.
Resumo:
24-norursodeoxycholic acid (norUDCA), a side chain-modified ursodeoxycholic acid derivative, has dramatic therapeutic effects in experimental cholestasis and may be a promising agent for the treatment of cholestatic liver diseases. We aimed to better understand the physiologic and therapeutic properties of norUDCA and to test if they are related to its side chain length and/or relative resistance to amidation. For this purpose, Mdr2-/- mice, a model for sclerosing cholangitis, received either a standard diet or a norUDCA-, tauro norursodeoxycholic acid (tauro- norUDCA)-, or di norursodeoxycholic acid (di norUDCA)-enriched diet. Bile composition, serum biochemistry, liver histology, fibrosis, and expression of key detoxification and transport systems were investigated. Direct choleretic effects were addressed in isolated bile duct units. The role of Cftr for norUDCA-induced choleresis was explored in Cftr-/- mice. norUDCA had pharmacologic features that were not shared by its derivatives, including the increase in hepatic and serum bile acid levels and a strong stimulation of biliary HCO3- -output. norUDCA directly stimulated fluid secretion in isolated bile duct units in a HCO3- -dependent fashion to a higher extent than the other bile acids. Notably, the norUDCA significantly stimulated HCO 3- -output also in Cftr-/- mice. In Mdr2-/- mice, cholangitis and fibrosis strongly improved with norUDCA, remained unchanged with tauro- norUDCA, and worsened with di norUDCA. Expression of Mrp4, Cyp2b10, and Sult2a1 was increased by norUDCA and di norUDCA, but was unaffected by tauro- norUDCA. Conclusion:The relative resistance of norUDCA to amidation may explain its unique physiologic and pharmacologic properties. These include the ability to undergo cholehepatic shunting and to directly stimulate cholangiocyte secretion, both resulting in a HCO3- -rich hypercholeresis that protects the liver from cholestatic injury.
Resumo:
Two new three-dimensional metal-organic frameworks (MOFs) [Mn-2(mu(3)-OH)(H2O)(2)(BTC)]-2 H2O, I, and [NaMn(BTC)], II (BTC=1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn-4 cluster, [Mn-4(mu(5)-OH)(2)(H2O)(4)O-12], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn-4 clusters, resulting in a fluorite-like structure. In II, the Mn2O8 dimer is connected with two Na+ ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.
Resumo:
A number of bile acid derived photoinduced electron transfer (PET) based sensors for metal ions are prepared. A general strategy for designing the sensor with a modular nature allows for making different molecules capable of sensing different metal ions by a change in the fluorophore and receptor unit. Keeping the basic molecular structure the same, different bile acid base fluoroionophores were prepared inorder to achieve the highest sensitivity toward the metal ions. Thesensors showed similar binding constants for the same metal ion, but the degree Of fluorescence enhancement upon addition of the metal salts were different. The sensitivities of the sensors towards a certain metal were determined from the observed fluorescence enhancement upon addition of the metal salt.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
C17H2602, M, = 262, triclinic, PI, a = 8.513(2), b = 8.970(2), c = 11.741(3)A, a = 120.51 (5), fl = 93.30(4), y = 68.43(4) ° , V = 708.9,/k 3, Z = 2, D O = 1.213, D e = 1.227 Mg m -a, g(Mo Ka, 2 = 0.7107 ,&) = 0.084 mm -1, F(000) = 288. The structure, solved by direct methods, has been refined to an R value of 5.9% using 1361 intensity measurements. The ring junctions, in sequence from either end of the polycycle, are cis, trans and cis.
Resumo:
A novel zig-zag (Z) structure is proposed for poly d(GC).poly d(GC). The proposed model closely resembles the crystal structure of d(CG)3.
Resumo:
Complexation of alkali and alkaline earth metal ions with crown ethers is well known (1) and chemical and crystallographic studies have been carried out for number of complexes (2,3). The interaction of the metal with the crown ether depends on the nature of the cation and particularly on the basicity of the anion (4) , In this paper we report the crystal and molecular structure of a lithium picrate complex of benzo-15-crown-5, the first x-ray crystallographic study of a lithlum-crown system.
Resumo:
C18H2204, orthorhombic, P212~21, a = 7.343 (4), b = 11.251 (4), c = 19.357 (4)A, Z = 4, Dr, ' = 1.20, D e = 1.254 g cm -3, F(000) = 648, p(MoKa) = 0.94 cm -~. X-ray intensity data were collected on a Nonius CAD-4 diffractometer and the structure was solved by direct methods. Full-matrix least-squares refinement gave R = 0.052 (R w = 0.045) for 1053 observed reflections. The stereochemical configuration at C(2) has been shown to be 2-exo-methyl-2-endo-(2,6-dimethoxyphenyl), i.e. (3) in contrast to the structure (2) assigned earlier based on its ~H NMR data.
Resumo:
The crystal structures of the synthetic self-complementary octamer d(G-G-T-A-T-A-C-C) and its 5-bromouracil-containing analogue have been refined to R values of 20% and 14% at resolutions of 1·8 and 2·25 Å, respectively. The molecules adopt an A-DNA type double-helical conformation, which is minimally affected by crystal forces. A detailed analysis of the structure shows a considerable influence of the nucleotide sequence on the base-pair stacking patterns. In particular, the electrostatic stacking interactions between adjacent guanine and thymine bases produce symmetric bending of the double helix and a major-groove widening. The sugar-phosphate backbone appears to be only slightly affected by the base sequence. The local variations in the base-pair orientation are brought about by correlated adjustments in the backbone torsion angles and the glycosidic orientation. Sequence-dependent conformational variations of the type observed here may contribute to the specificity of certain protein-DNA interactions.
Resumo:
CIsH20N3Oa+.C1-.H2 O, M r = 395, orthorhombic, Pn21a, a = 7.710 (4), b = 11.455 (3), c -- 21.199 (3)/k, Z = 4, V = 1872.4/k 3, D m = 1.38, D C = 1.403 g cm -3, F(000) = 832, g(Cu Kct) = 20.94 cm -l. Intensities for 1641 reflections were measured on a Nonius CAD-4 diffractometer; of these, 1470 were significant. The structure was solved by direct methods and refined to an R index of 0.045 using a blockdiagonal least-squares procedure. The angle between the least-squares planes through the benzene rings is 125.0 (5) ° and the side chain is folded similarly to one of the independent molecules of imipramine hydrochloride.
Resumo:
CaH406P-.K +, M r = 206.10, is orthorhombic, space group Pbca (from systematic absences), a = 14.538(4), b = 13.364(5), c = 6.880 (6)A, U = 1383.9 A 3, D x = 2.07 Mg m -a, Z = 8, ~.(Mo Ka) = 0.7107/~, p(MO Ka) = 1.015 mm -1. The final R value is 0.042 for a total of 1397 reflections. The high energy P-O(13) and the enolic C(1)-O(13) bonds are 1.612 and 1.374 A respectively. The enolpyruvate moiety is essentially planar. The orientation of the phosphate with respect to the pyruvate group in PEP.K is distinctly different from that in the PEP-cyclohexylammonium salt, the torsion angle C (2)-C (1)-O(13)- P being -209.1 in the former and -90 ° in the latter. The K + ion binds simultaneously to both the phosphate and carboxyl ends of the same PEP molecule. The ester O(13) is also a binding site for the cation. The K + ion is coplanar with the pyruvate moiety and binds to 0(22) and O(13) almost along their lone-pair directions. The carbonyl 0(22) prefers to bind to the K + ion rather than take part in the formation of hydrogen bonds usually observed in carboxylic acid structures.