114 resultados para Model theory
Resumo:
We analytically study the role played by the network topology in sustaining cooperation in a society of myopic agents in an evolutionary setting. In our model, each agent plays the Prisoner's Dilemma (PD) game with its neighbors, as specified by a network. Cooperation is the incumbent strategy, whereas defectors are the mutants. Starting with a population of cooperators, some agents are switched to defection. The agents then play the PD game with their neighbors and compute their fitness. After this, an evolutionary rule, or imitation dynamic is used to update the agent strategy. A defector switches back to cooperation if it has a cooperator neighbor with higher fitness. The network is said to sustain cooperation if almost all defectors switch to cooperation. Earlier work on the sustenance of cooperation has largely consisted of simulation studies, and we seek to complement this body of work by providing analytical insight for the same. We find that in order to sustain cooperation, a network should satisfy some properties such as small average diameter, densification, and irregularity. Real-world networks have been empirically shown to exhibit these properties, and are thus candidates for the sustenance of cooperation. We also analyze some specific graphs to determine whether or not they sustain cooperation. In particular, we find that scale-free graphs belonging to a certain family sustain cooperation, whereas Erdos-Renyi random graphs do not. To the best of our knowledge, ours is the first analytical attempt to determine which networks sustain cooperation in a population of myopic agents in an evolutionary setting.
Resumo:
Gene expression in living systems is inherently stochastic, and tends to produce varying numbers of proteins over repeated cycles of transcription and translation. In this paper, an expression is derived for the steady-state protein number distribution starting from a two-stage kinetic model of the gene expression process involving p proteins and r mRNAs. The derivation is based on an exact path integral evaluation of the joint distribution, P(p, r, t), of p and r at time t, which can be expressed in terms of the coupled Langevin equations for p and r that represent the two-stage model in continuum form. The steady-state distribution of p alone, P(p), is obtained from P(p, r, t) (a bivariate Gaussian) by integrating out the r degrees of freedom and taking the limit t -> infinity. P(p) is found to be proportional to the product of a Gaussian and a complementary error function. It provides a generally satisfactory fit to simulation data on the same two-stage process when the translational efficiency (a measure of intrinsic noise levels in the system) is relatively low; it is less successful as a model of the data when the translational efficiency (and noise levels) are high.
Resumo:
Solid-solid collapse transition in open framework structures is ubiquitous in nature. The real difficulty in understanding detailed microscopic aspects of such transitions in molecular systems arises from the interplay between different energy and length scales involved in molecular systems, often mediated through a solvent. In this work we employ Monte-Carlo simulation to study the collapse transition in a model molecular system interacting via both isotropic as well as anisotropic interactions having different length and energy scales. The model we use is known as Mercedes-Benz (MB), which, for a specific set of parameters, sustains two solid phases: honeycomb and oblique. In order to study the temperature induced collapse transition, we start with a metastable honeycomb solid and induce transition by increasing temperature. High density oblique solid so formed has two characteristic length scales corresponding to isotropic and anisotropic parts of interaction potential. Contrary to the common belief and classical nucleation theory, interestingly, we find linear strip-like nucleating clusters having significantly different order and average coordination number than the bulk stable phase. In the early stage of growth, the cluster grows as a linear strip, followed by branched and ring-like strips. The geometry of growing cluster is a consequence of the delicate balance between two types of interactions, which enables the dominance of stabilizing energy over destabilizing surface energy. The nucleus of stable oblique phase is wetted by intermediate order particles, which minimizes the surface free energy. In the case of pressure induced transition at low temperature the collapsed state is a disordered solid. The disordered solid phase has diverse local quasi-stable structures along with oblique-solid like domains. (C) 2013 AIP Publishing LLC.
Resumo:
We present a nonequilibrium strong-coupling approach to inhomogeneous systems of ultracold atoms in optical lattices. We demonstrate its application to the Mott-insulating phase of a two-dimensional Fermi-Hubbard model in the presence of a trap potential. Since the theory is formulated self-consistently, the numerical implementation relies on a massively parallel evaluation of the self-energy and the Green's function at each lattice site, employing thousands of CPUs. While the computation of the self-energy is straightforward to parallelize, the evaluation of the Green's function requires the inversion of a large sparse 10(d) x 10(d) matrix, with d > 6. As a crucial ingredient, our solution heavily relies on the smallness of the hopping as compared to the interaction strength and yields a widely scalable realization of a rapidly converging iterative algorithm which evaluates all elements of the Green's function. Results are validated by comparing with the homogeneous case via the local-density approximation. These calculations also show that the local-density approximation is valid in nonequilibrium setups without mass transport.
Resumo:
In this paper, we present a spectral finite element model (SFEM) using an efficient and accurate layerwise (zigzag) theory, which is applicable for wave propagation analysis of highly inhomogeneous laminated composite and sandwich beams. The theory assumes a layerwise linear variation superimposed with a global third-order variation across the thickness for the axial displacement. The conditions of zero transverse shear stress at the top and bottom and its continuity at the layer interfaces are subsequently enforced to make the number of primary unknowns independent of the number of layers, thereby making the theory as efficient as the first-order shear deformation theory (FSDT). The spectral element developed is validated by comparing the present results with those available in the literature. A comparison of the natural frequencies of simply supported composite and sandwich beams obtained by the present spectral element with the exact two-dimensional elasticity and FSDT solutions reveals that the FSDT yields highly inaccurate results for the inhomogeneous sandwich beams and thick composite beams, whereas the present element based on the zigzag theory agrees very well with the exact elasticity solution for both thick and thin, composite and sandwich beams. A significant deviation in the dispersion relations obtained using the accurate zigzag theory and the FSDT is also observed for composite beams at high frequencies. It is shown that the pure shear rotation mode remains always evanescent, contrary to what has been reported earlier. The SFEM is subsequently used to study wavenumber dispersion, free vibration and wave propagation time history in soft-core sandwich beams with composite faces for the first time in the literature. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
A pair of commuting operators (S,P) defined on a Hilbert space H for which the closed symmetrized bidisc Gamma = {(z(1) + z(2), z(1)z(2)) : vertical bar z(1)vertical bar <= 1, vertical bar z(2)vertical bar <= 1} subset of C-2 is a spectral set is called a Gamma-contraction in the literature. A Gamma-contraction (S, P) is said to be pure if P is a pure contraction, i.e., P*(n) -> 0 strongly as n -> infinity Here we construct a functional model and produce a set of unitary invariants for a pure Gamma-contraction. The key ingredient in these constructions is an operator, which is the unique solution of the operator equation S - S*P = DpXDp, where X is an element of B(D-p), and is called the fundamental operator of the Gamma-contraction (S, P). We also discuss some important properties of the fundamental operator.
Resumo:
A discrete vortex method-based model has been proposed for two-dimensional/three-dimensional ground-effect prediction. The model merely requires two-dimensional sectional aerodynamics in free flight. This free-flight data can be obtained either from experiments or a high-fidelity computational fluid dynamics solver. The first step of this two-step model involves a constrained optimization procedure that modifies the vortex distribution on the camber line as obtained from a discrete vortex method to match the free-flight data from experiments/computational fluid dynamics. In the second step, the vortex distribution thus obtained is further modified to account for the presence of the ground plane within a discrete vortex method-based framework. Whereas the predictability of the lift appears as a natural extension, the drag predictability within a potential flow framework is achieved through the introduction of what are referred to as drag panels. The need for the use of the generalized Kutta-Joukowski theorem is emphasized. The extension of the model to three dimensions is by the way of using the numerical lifting-line theory that allows for wing sweep. The model is extensively validated for both two-dimensional and three-dimensional ground-effect studies. The work also demonstrates the ability of the model to predict lift and drag coefficients of a high-lift wing in ground effect to about 2 and 8% accuracy, respectively, as compared to the results obtained using a Reynolds-averaged Navier-Stokes solver involving grids with several million volumes. The model shows a lot of promise in design, particularly during the early phase.
Resumo:
Communication complexity refers to the minimum rate of public communication required for generating a maximal-rate secret key (SK) in the multiterminal source model of Csiszar and Narayan. Tyagi recently characterized this communication complexity for a two-terminal system. We extend the ideas in Tyagi's work to derive a lower bound on communication complexity in the general multiterminal setting. In the important special case of the complete graph pairwise independent network (PIN) model, our bound allows us to determine the exact linear communication complexity, i.e., the communication complexity when the communication and SK are restricted to be linear functions of the randomness available at the terminals.
Resumo:
In this paper, we address the problem of characterizing the instances of the multiterminal source model of Csiszar and Narayan in which communication from all terminals is needed for establishing a secret key of maximum rate. We give an information-theoretic sufficient condition for identifying such instances. We believe that our sufficient condition is in fact an exact characterization, but we are only able to prove this in the case of the three-terminal source model.
Resumo:
The isometric fluctuation relation (IFR) P. I. Hurtado et al., Proc. Natl. Acad. Sci. USA 108, 7704 (2011)] relates the relative probability of current fluctuations of fixed magnitude in different spatial directions. We test its validity in an experiment on a tapered rod, rendered motile by vertical vibration and immersed in a sea of spherical beads. We analyze the statistics of the velocity vector of the rod and show that they depart significantly from the IFR of Hurtado et al. Aided by a Langevin-equation model we show that our measurements are largely described by an anisotropic generalization of the IFR R. Villavicencio et al., Europhys. Lett. 105, 30009 (2014)], with no fitting parameters, but with a discrepancy in the prefactor whose origin may lie in the detailed statistics of the microscopic noise. The experimentally determined large-deviation function of the velocity vector has a kink on a curve in the plane.
Resumo:
A state-based micropolar peridynamic theory for linear elastic solids is proposed. The main motivation is to introduce additional micro-rotational degrees of freedom to each material point and thus naturally bring in the physically relevant material length scale parameters into peridynamics. Non-ordinary type modeling via constitutive correspondence is adopted here to define the micropolar peridynamic material. Along with a general three dimensional model, homogenized one dimensional Timoshenko type beam models for both the proposed micropolar and the standard non-polar peridynamic variants are derived. The efficacy of the proposed models in analyzing continua with length scale effects is established via numerical simulations of a few beam and plane-stress problems. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We use general arguments to show that colored QCD states when restricted to gauge invariant local observables are mixed. This result has important implications for confinement: a pure colorless state can never evolve into two colored states by unitary evolution. Furthermore, the mean energy in such a mixed colored state is infinite. Our arguments are confirmed in a matrix model for QCD that we have developed using the work of Narasimhan and Ramadas(3) and Singer.(2) This model, a (0 + 1)-dimensional quantum mechanical model for gluons free of divergences and capturing important topological aspects of QCD, is adapted to analytical and numerical work. It is also suitable to work on large N QCD. As applications, we show that the gluon spectrum is gapped and also estimate some low-lying levels for N = 2 and 3 (colors). Incidentally the considerations here are generic and apply to any non-Abelian gauge theory.
Resumo:
Quantifying distributional behavior of extreme events is crucial in hydrologic designs. Intensity Duration Frequency (IDF) relationships are used extensively in engineering especially in urban hydrology, to obtain return level of extreme rainfall event for a specified return period and duration. Major sources of uncertainty in the IDF relationships are due to insufficient quantity and quality of data leading to parameter uncertainty due to the distribution fitted to the data and uncertainty as a result of using multiple GCMs. It is important to study these uncertainties and propagate them to future for accurate assessment of return levels for future. The objective of this study is to quantify the uncertainties arising from parameters of the distribution fitted to data and the multiple GCM models using Bayesian approach. Posterior distribution of parameters is obtained from Bayes rule and the parameters are transformed to obtain return levels for a specified return period. Markov Chain Monte Carlo (MCMC) method using Metropolis Hastings algorithm is used to obtain the posterior distribution of parameters. Twenty six CMIP5 GCMs along with four RCP scenarios are considered for studying the effects of climate change and to obtain projected IDF relationships for the case study of Bangalore city in India. GCM uncertainty due to the use of multiple GCMs is treated using Reliability Ensemble Averaging (REA) technique along with the parameter uncertainty. Scale invariance theory is employed for obtaining short duration return levels from daily data. It is observed that the uncertainty in short duration rainfall return levels is high when compared to the longer durations. Further it is observed that parameter uncertainty is large compared to the model uncertainty. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Gribov's observation that global gauge fixing is impossible has led to suggestions that there may be a deep connection between gauge fixing and confinement. We find an unexpected relation between the topological nontriviality of the gauge bundle and colored states in SU(N) Yang-Mills theory, and show that such states are necessarily impure. We approximate QCD by a rectangular matrix model that captures the essential topological features of the gauge bundle, and demonstrate the impure nature of colored states explicitly. Our matrix model also allows the inclusion of the QCD theta-term, as well as to perform explicit computations of low-lying glueball masses. This mass spectrum is gapped. Since an impure state cannot evolve to a pure one by a unitary transformation, our result shows that the solution to the confinement problem in pure QCD is fundamentally quantum information-theoretic.
Resumo:
We use Floquet theory to study the maximum value of the stroboscopic group velocity in a one-dimensional tight-binding model subjected to an on-site staggered potential varying sinusoidally in time. The results obtained by numerically diagonalizing the Floquet operator are analyzed using a variety of analytical schemes. In the low-frequency limit we use adiabatic theory, while in the high-frequency limit the Magnus expansion of the Floquet Hamiltonian turns out to be appropriate. When the magnitude of the staggered potential is much greater or much less than the hopping, we use degenerate Floquet perturbation theory; we find that dynamical localization occurs in the former case when the maximum group velocity vanishes. Finally, starting from an ``engineered'' initial state where the particles (taken to be hard-core bosons) are localized in one part of the chain, we demonstrate that the existence of a maximum stroboscopic group velocity manifests in a light-cone-like spreading of the particles in real space.