119 resultados para Minimum Entropy Deconvolution
Resumo:
In arXiv:1310.5713 1] and arXiv:1310.6659 2] a formula was proposed as the entanglement entropy functional for a general higher-derivative theory of gravity, whose lagrangian consists of terms containing contractions of the Riemann tensor. In this paper, we carry out some tests of this proposal. First, we find the surface equation of motion for general four-derivative gravity theory by minimizing the holographic entanglement entropy functional resulting from this proposed formula. Then we calculate the surface equation for the same theory using the generalized gravitational entropy method of arXiv:1304.4926 3]. We find that the two do not match in their entirety. We also construct the holographic entropy functional for quasi-topological gravity, which is a six-derivative gravity theory. We find that this functional gives the correct universal terms. However, as in the R-2 case, the generalized gravitational entropy method applied to this theory does not give exactly the surface equation of motion coming from minimizing the entropy functional.
Resumo:
We compute the logarithmic correction to black hole entropy about exponentially suppressed saddle points of the Quantum Entropy Function corresponding to Z(N) orbifolds of the near horizon geometry of the extremal black hole under study. By carefully accounting for zero mode contributions we show that the logarithmic contributions for quarter-BPS black holes in N = 4 supergravity and one-eighth BPS black holes in N = 8 supergravity perfectly match with the prediction from the microstate counting. We also find that the logarithmic contribution for half-BPS black holes in N = 2 supergravity depends non-trivially on the Z(N) orbifold. Our analysis draws heavily on the results we had previously obtained for heat kernel coefficients on Z(N) orbifolds of spheres and hyperboloids in arXiv:1311.6286 and we also propose a generalization of the Plancherel formula to Z(N) orbifolds of hyperboloids to an expression involving the Harish-Chandra character of sl (2, R), a result which is of possible mathematical interest.
Resumo:
Using generalized bosons, we construct the fuzzy sphere S-F(2) and monopoles on S-F(2) in a reducible representation of SU(2). The corresponding quantum states are naturally obtained using the GNS-construction. We show that there is an emergent nonabelian unitary gauge symmetry which is in the commutant of the algebra of observables. The quantum states are necessarily mixed and have non-vanishing von Neumann entropy, which increases monotonically under a bistochastic Markov map. The maximum value of the entropy has a simple relation to the degeneracy of the irreps that constitute the reducible representation that underlies the fuzzy sphere.
Resumo:
We address the problem of designing an optimal pointwise shrinkage estimator in the transform domain, based on the minimum probability of error (MPE) criterion. We assume an additive model for the noise corrupting the clean signal. The proposed formulation is general in the sense that it can handle various noise distributions. We consider various noise distributions (Gaussian, Student's-t, and Laplacian) and compare the denoising performance of the estimator obtained with the mean-squared error (MSE)-based estimators. The MSE optimization is carried out using an unbiased estimator of the MSE, namely Stein's Unbiased Risk Estimate (SURE). Experimental results show that the MPE estimator outperforms the SURE estimator in terms of SNR of the denoised output, for low (0 -10 dB) and medium values (10 - 20 dB) of the input SNR.
Resumo:
We consider conformal field theories in 1 + 1 dimensions with W-algebra symmetries, deformed by a chemical potential mu for the spin-three current. We show that the order mu(2) correction to the Renyi and entanglement entropies of a single interval in the deformed theory, on the infinite spatial line and at finite temperature, is universal. The correction is completely determined by the operator product expansion of two spin-three currents, and by the expectation values of the stress tensor, its descendants and its composites, evaluated on the n-sheeted Riemann surface branched along the interval. This explains the recently found agreement of the order mu(2) correction across distinct free field CFTs and higher spin black hole solutions holographically dual to CFTs with W symmetry.
Resumo:
We compute logarithmic corrections to the twisted index B-6(g) in four-dimensional N = 4 and N = 8 string theories using the framework of the Quantum Entropy Function. We find that these vanish, matching perfectly with the large-charge expansion of the corresponding microscopic expressions.
Resumo:
We develop new techniques to efficiently evaluate heat kernel coefficients for the Laplacian in the short-time expansion on spheres and hyperboloids with conical singularities. We then apply these techniques to explicitly compute the logarithmic contribution to black hole entropy from an N = 4 vector multiplet about a Z(N) orbifold of the near-horizon geometry of quarter-BPS black holes in N = 4 supergravity. We find that this vanishes, matching perfectly with the prediction from the microstate counting. We also discuss possible generalisations of our heat kernel results to higher-spin fields over ZN orbifolds of higher-dimensional spheres and hyperboloids.
Resumo:
We examine relative entropy in the context of the higher spin/CFT duality. We consider 3D bulk configurations in higher spin gravity which are dual to the vacuum and a high temperature state of a CFT with W-algebra symmetries in the presence of a chemical potential for a higher spin current. The relative entropy between these states is then evaluated using the Wilson line functional for holographic entanglement entropy. In the limit of small entangling intervals, the relative entropy should vanish for a generic quantum system. We confirm this behavior by showing that the difference in the expectation values of the modular Hamiltonian between the states matches with the difference in the entanglement entropy in the short-distance regime. Additionally, we compute the relative entropy of states corresponding to smooth solutions in the SL(2, Z) family with respect to the vacuum.
Resumo:
Spontaneous entry of water molecules inside single-wall carbon nanotubes (SWCNTs) has been confirmed by both simulations and experiments. Using molecular dynamics simulations, we have studied the thermodynamics of filling of a (6,6) carbon nanotube in a temperature range from 273 to 353K and with different strengths of the nanotube-water interaction. From explicit energy and entropy calculations using the two-phase thermodynamics method, we have presented a thermodynamic understanding of the filling behaviour of a nanotube. We show that both the energy and the entropy of transfer decrease with increasing temperature. On the other hand, scaling down the attractive part of the carbon-oxygen interaction results in increased energy of transfer while the entropy of transfer increases slowly with decreasing the interaction strength. Our results indicate that both energy and entropy favour water entry into (6,6) SWCNTs. Our results are compared with those of several recent studies of water entry into carbon nanotubes.
Resumo:
The entropy generation due to mixed convective heat transfer of nanofluids past a rotating circular cylinder placed in a uniform cross stream is investigated via streamline upwind Petrov-Galerkin based finite element method. Nanosized copper (Cu) particles suspended in water are used with Prandtl number (Pr)=6.9. The computations are carried out at a representative Reynolds number (Re) of 100. The dimensionless cylinder rotation rate, a, is varied between 0 and 2. The range of nanoparticle volume fractions (phi) considered is 0 <= phi <= 5%. Effect of aiding buoyancy is brought about by considering two fixed values of the Richardson number (Ri) as 0.5 and 1.0. A new model for predicting the effective viscosity and thermal conductivity of dilute suspensions of nanoscale colloidal particles is presented. The model addresses the details of the agglomeration-deagglomeration in tune with the pertinent variations in the effective particulate dimensions, volume fractions, as well as the aggregate structure of the particulate system. The total entropy generation is found to decrease sharply with cylinder rotation rates and nanoparticle volume fractions. Increase in nanoparticle agglomeration shows decrease in heat transfer irreversibility. The Bejan number falls sharply with increase in alpha and phi.
Resumo:
In a complete bipartite graph with vertex sets of cardinalities n and n', assign random weights from exponential distribution with mean 1, independently to each edge. We show that, as n -> infinity, with n' = n/alpha] for any fixed alpha > 1, the minimum weight of many-to-one matchings converges to a constant (depending on alpha). Many-to-one matching arises as an optimization step in an algorithm for genome sequencing and as a measure of distance between finite sets. We prove that a belief propagation (BP) algorithm converges asymptotically to the optimal solution. We use the objective method of Aldous to prove our results. We build on previous works on minimum weight matching and minimum weight edge cover problems to extend the objective method and to further the applicability of belief propagation to random combinatorial optimization problems.
Resumo:
We compute the renormalized entanglement entropy (REE) for BPS black solutions in N = 2, four-dimensional gauged supergravity. We find that this quantity decreases monotonically with the size of the entangling region until it reaches a critical point, then increases and approaches the entropy density of the brane. This behavior can be understood as a consequence of the renormalized entanglement entropy being driven by two competing factors, namely, entanglement and the mixedness of the black brane. In the UV, entanglement dominates, whereas in the IR, the mixedness takes over.
Resumo:
Small covers were introduced by Davis and Januszkiewicz in 1991. We introduce the notion of equilibrium triangulations for small covers. We study equilibrium and vertex minimal 4-equivariant triangulations of 2-dimensional small covers. We discuss vertex minimal equilibrium triangulations of RP3#RP3, S-1 x RP2 and a nontrivial S-1 bundle over RP2. We construct some nice equilibrium triangulations of the real projective space RPn with 2(n) + n 1 vertices. The main tool is the theory of small covers.
Resumo:
Minimizing energy consumption is of utmost importance in an energy starved system with relaxed performance requirements. This brief presents a digital energy sensing method that requires neither a constant voltage reference nor a time reference. An energy minimizing loop uses this to find the minimum energy point and sets the supply voltage between 0.2 and 0.5 V. Energy savings up to 1275% over existing minimum energy tracking techniques in the literature is achieved.
Resumo:
We quantize the space of 2-charge fuzzballs in IIB supergravity on K3. The resulting entropy precisely matches the D1-D5 black hole entropy, including a specific numerical coefficient. A partial match (ie., a smaller coefficient) was found by Rychkov a decade ago using the Lunin-Mathur subclass of solutions - we use a simple observation to generalize his approach to the full moduli space of K3 fuzzballs, filling a small gap in the literature.