244 resultados para Mechanical ball thrower


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amorphous phase has been synthesized by mechanical alloying in a planetary mill over a nickel content range of 10�70 at.% in the Ti---Ni system and a copper content range of 10�50 at.% in the Ti---Cu system. In the case of ternary Ti---Ni---Cu alloys the glass-forming composition range has been found to be given by x = 10�20 for Ti60Ni40 ? xCux, x = 10 � 30 for Ti50Ni50 ? xCux and x = 10 � 40 for Ti40Ni60 ? xCux alloys. The difficulty in the amorphization of copper-rich compositions is explained in the light of enthalpy composition diagrams calculated for the ternary solid solution and the amorphous phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A steel ball was slid on aluminium-silicon alloys at different temperatures. After the coefficient of friction had been measured, the surface shear stress was deconvoluted using a two-term model of friction. The ratio of surface shear stress to bulk hardness was calculated as a function of temperature, silicon content and alloying additions. These results are qualitatively similar to those recorded for pre-seizure specimens slid against an En24 disc in a pin-on-disc machine. This similarity, when viewed in the context of the phenomenon of bulk shear, provides a model for seizure of these alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanical milling of a stoichiometric mixture of Bi2O3 and V2O5 yielded nanosized powders of bismuth vanadate, Bi2VO5.5 (BN). Structural evolution of the desired BiV phase, through an intermediate product (BiVO4), was monitored by subjecting the powders, ball milled for various durations to X-ray powder diffraction (XRD), differential thermal analysis (DTA), and transmission electron microscopic (TEM) studies. XRD studies indicate that the relative amount of the BiV phase present in the ball-milled mixture increases with increase in milling time and its formation reaches completion within 54 h of milling. Assynthesized powders were found to stabilize in the high-temperature tetragonal (gamma) phase. DTA analyses of the powders milled for various durations suggest that the BN phase-formation temperature decreases with increase in milling time. The nanometric size (30 nm) of the crystallites in the final product was confirmed by TEM and XRD studies. TEM studies clearly demonstrate the growth of BiV on Bi2O3 crystallites. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the effect of confining pressure on the mechanical behavior of granular materials from micromechanical considerations starting from the grain scale level, based on the results of numerically simulated tests on disc assemblages using discrete element modeling (DEM). The two macro parameters which are influenced by the increase in confining pressure are stiffness (increases) and volume change (decreases). The lateral strain coefficient (Poisson's ratio) at the beginning of the test is more or less constant. The angle of internal friction slightly decreases with increase in confining pressure. The numerical results of disc assemblages indicate very clearly a non-linear Mohr-Coulomb failure envelope with increase in confining pressure. The increase in average coordination number and accompanying decrease of fabric anisotropy reduce the shear strength at higher confining pressures. Micromechanical explanations of the macroscopic behavior are presented in terms of the force and fabric anisotropy coefficients. (C) 1999 Elsevier Science Ltd. AII rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of mechanical activation on the formation of Bi2VO5.5 bismuth vanadate (BiV) phase, was investigated by ball-milling a stoichiometric mixture of bismuth oxide and vanadium pentoxide. The structural evolution of the desired BN phase, via an intermediate BiVO4,phase, was investigated using X-ray powder diffraction; (XRD), differential thermal analysis (DTA) and transmission electron microscopy (TEM). Milling for 54h. yielded monophasic gamma-BiV powders with an average crystallite size of 30 nm. The electron paramagnetic resonance (EPR) peaks associated with the V4+ ions are stronger and broader in nanocrystalline (n) BN than in the conventionally prepared microcrystalline (m) BN, suggesting theta significant portion of V5+ has been transformed to V4+ during milling. The optical bandgap of n-BiV was found to be higher than that of m-BiV. High density (97% of the theoretical density), fine-grained (average grain-size of 2 tun) ceramics with uniform grain-size distribution could be fabricated using n-BiV powders. These fine-grained ceramics exhibit improved dielectric, pyre and ferroelectric properties. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single-wall carbon nanotubes (SWNTs) are fascinating systems exhibiting many novel physical properties. In this paper, we give a brief review of the structural, electronic, vibrational, and mechanical properties of carbon nanotubes. In situ resonance Raman scattering of SWNTs investigated under electrochemical biasing demonstrates that the intensity of the radial breathing mode varies significantly in a nonmonotonic manner as a function of the cathodic bias voltage, but does not change appreciably under anodic bias. These results can be quantitatively understood in terms of the changes in the energy gaps between the 1 D van Hove singularities in the electron density of states, arising possibly due to the alterations in the overlap integral of pi bonds between the p-orbitals of the adjacent carbon atoms. In the second part of this paper, we review our high-pressure X-ray diffraction results, which show that the triangular lattice of the carbon nanotube bundles continues to persist up to similar to10 GPa. The lattice is seen to relax just before the phase transformation, which is observed at similar to10 GPa. Further, our results display the reversibility of the 2D lattice symmetry even after compression up to 13 GPa well beyond the 5 GPa value observed recently. These experimental results explicitly validate the predicted remarkable mechanical resilience of the nanotubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binary and ternary blends of nylon-6/low density polyethylene (nylon-6/LDPE) and Nylon-6/LDPE/poly(ethylene-co-glycidyl methacrylate) were prepared by melt mixing. The blends exhibit two phase morphology with LDPE dispersed in the form of spherical domains in the nylon-6 matrix. The mechanical properties of the blends were measured by standard methods. It is shown that the use of the epoxy copolymer as a compatibilizer improves the impact strength of the blend as compared to nylon-6, which is attributed to better stress transfer across the interface due to the compatibilizer. The data for each mechanical property were also fitted into a best fit model equation and the method of steepest ascent was applied to arrive at the optimum composition of the blend for that property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of Fe content (0.2 to 0.6 pct) on the microstructure and mechanical properties of a cast Al-7Si-0.3Mg (LM 25/356) alloy has been investigated. Further, 1 pct mischmetal (MM) additions (a mixture of rare-earth (RE) elements) were made to these alloys, and their mechanical properties at room and at elevated temperatures (up to 200 degreesC) were evaluated. A structure-property correlation on this alloy was attempted using optical microstructure analysis, fractographs, X-ray diffraction, energy-dispersive analysis of X-rays (EDX), and quantitative metallography by image analysis. An increase in Fe content increased the volume percentage of Fe-bearing intermetallic compounds (beta and pi phases), contributing to the lower yield strength (YS), ultimate tensile strength (UTS), percentage elongation, and higher hardness. An addition of 1 pct MM to the alloys containing 0.2 and 0.6 pct Fe was found to refine the microstructure; modify the eutectic silicon and La, Ce, and Nd present in the MM; form different intermetallic compounds with Al, Si, Fe, and Mg; and improve the mechanical properties of the alloys both at room and elevated temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of powder processing and sintering temperature on densification, microstructure and mechanical properties of hydroxyapatite (HAp) ceramics was studied. The as-dried, calcined and processed HAp powders were uniaxially compacted and sintered at various temperatures (1000-1400 degreesC) for 3 h. The as-dried and processed powders, attained 97% of theoretical density (TD) at 1100 degreesC) at higher sintering temperatures, the density of the as-dried powder compact was found to decrease. A uniform microstructure with fine grain size (2.3 pm) was observed for material obtained from processed powder, whereas exaggerated grain growth with closed pores were observed in as-dried and unprocessed powder compacts. The Vickers' hardness, fracture toughness and flexural strength of HAp were determined and a maximum value of 6.3 GPa and 0.88 MPam(1/2) and 60.3 MPa, respectively were obtained for processed compact. The processing of HAp has improved its densification, microstructure homogeneity and mechanical properties. (C) 2002 Elsevier Science Ltd and Techna S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We synthesize vertically aligned arrays of carbon nanotubes (CNTs) in a chemical vapor deposition system with floating catalyst, using different concentrations of hydrogen in the gas feedstock. We report the effect of different hydrogen concentrations on the microstructure and mechanical properties of the resulting material. We show that a lower hydrogen concentration during synthesis results in the growth of stiffer CNT arrays with higher average bulk density. A lower hydrogen concentration also leads to the synthesis of CNT arrays that can reach higher peak stress at maximum compressive strain, and dissipate a larger amount of energy during compression. The individual CNTs in the arrays synthesized with a lower hydrogen concentration have, on average, larger outer diameters (associated with the growth of CNTs with a larger number of walls), but present a less uniform diameter distribution. The overall heights of the arrays and their strain recovery after compression have been found to be independent of the hydrogen concentration during growth. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electron beam welding technique was used to join Zr41Ti14Cu12Ni10Be23 bulk metallic glass (BMG) to crystalline pure Zr. Compositional, microstructural, and mechanical property variations across the welded interface were evaluated. It is shown that a crystalline layer develops close to the welding interface. Transmission electron microscopy of this layer indicates the crystalline phase to be tetragonal with lattice parameters close to that reported for Zr2Ni. However, the composition of this phase is different as it contains other alloying additions. The interface layer close to the bulk metallic glass side contains nanocrystalline Zr2Cu phase embedded in the glassy matrix. Nanoindentation experiments indicate that the hardness of the crystalline layer, although less than the bulk metallic glass, is more than the Zr itself. Commensurately, tensile tests indicate that the failure of the welded samples occurs at the Zr side rather than at the weld joint.

Relevância:

20.00% 20.00%

Publicador: