98 resultados para Mathematical transformations
Resumo:
This article considers a semi-infinite mathematical programming problem with equilibrium constraints (SIMPEC) defined as a semi-infinite mathematical programming problem with complementarity constraints. We establish necessary and sufficient optimality conditions for the (SIMPEC). We also formulate Wolfe- and Mond-Weir-type dual models for (SIMPEC) and establish weak, strong and strict converse duality theorems for (SIMPEC) and the corresponding dual problems under invexity assumptions.
Resumo:
The present work reports the impact of sintering conditions on the phase stability in hydroxyapatite (HA) magnetite (Fe3O4) bulk composites, which were densified using either pressureless sintering in air or by rapid densification via hot pressing in inert atmosphere. In particular, the phase abundances, structural and magnetic properties of the (1-x)HA-xFe(3)O(4) (x = 5, 10, 20, and 40 wt %) composites were quantified by corroborating results obtained from Rietveld refinement of the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Mossbauer spectroscopy. Post heat treatment phase analysis revealed a major retention of Fe3O4 in argon atmosphere, while it was partially/completely oxidized to hematite (alpha-Fe2O3) in air. Mossbauer results suggest the high-temperature diffusion of Fe3+ into hydroxyapatite lattice, leading to the formation of Fe-doped HA. A preferential occupancy of Fe3+ at the Ca(1) and Ca(2) sites under hot-pressing and conventional sintering conditions, respectively, was observed. The lattice expansion in HA from Rietveld analysis correlated well with the amounts of Fe-doped HA determined from the Mossbauer spectra. Furthermore, hydroxyapatite in the monoliths and composites was delineated to exist in the monoclinic (P2(1)/b) structure as against the widely reported hexagonal (P6(3)/m) crystal lattice. The compositional similarity of iron doping in hydroxyapatite to that of tooth enamel and bone presents HA-Fe3O4 composites as potential orthopedic and dental implant materials.
Resumo:
Mathematics is beautiful and precise and often necessary to understand complex biological phenomena. And yet biologists cannot always hope to fully understand the mathematical foundations of the theory they are using or testing. How then should biologists behave when mathematicians themselves are in dispute? Using the on-going controversy over Hamilton's rule as an example, I argue that biologists should be free to treat mathematical theory with a healthy dose of agnosticism. In doing so biologists should equip themselves with a disclaimer that publicly admits that they cannot entirely attest to the veracity of the mathematics underlying the theory they are using or testing. The disclaimer will only help if it is accompanied by three responsibilities - stay bipartisan in a dispute among mathematicians, stay vigilant and help expose dissent among mathematicians, and make the biology larger than the mathematics. I must emphasize that my goal here is not to take sides in the on-going dispute over the mathematical validity of Hamilton's rule, indeed my goal is to argue that we should refrain from taking sides.
Resumo:
Experimental studies (circular dichroism and ultra-violet (UV) absorption spectra) and large scale atomistic molecular dynamics simulations (accompanied by order parameter analyses) are combined to establish a number of remarkable (and unforeseen) structural transformations of protein myoglobin in aqueous ethanol mixture at various ethanol concentrations. The following results are particularly striking. (1) Two well-defined structural regimes, one at x(EtOH) similar to 0.05 and the other at x(EtOH) similar to 0.25, characterized by formation of distinct partially folded conformations and separated by a unique partially unfolded intermediate state at x(EtOH) similar to 0.15, are identified. (2) Existence of non-monotonic composition dependence of (i) radius of gyration, (ii) long range contact order, (iii) residue specific solvent accessible surface area of tryptophan, and (iv) circular dichroism spectra and UV-absorption peaks are observed. Interestingly at x(EtOH) similar to 0.15, time averaged value of the contact order parameter of the protein reaches a minimum, implying that this conformational state can be identified as a molten globule state. Multiple structural transformations well known in water-ethanol binary mixture appear to have considerably stronger effects on conformation and dynamics of the protein. We compare the present results with studies in water-dimethyl sulfoxide mixture where also distinct structural transformations are observed along with variation of co-solvent composition. (C) 2015 AIP Publishing LLC.
Resumo:
Early afterdepolarizations (EADs), which are abnormal oscillations of the membrane potential at the plateau phase of an action potential, are implicated in the development of cardiac arrhythmias like Torsade de Pointes. We carry out extensive numerical simulations of the TP06 and ORd mathematical models for human ventricular cells with EADs. We investigate the different regimes in both these models, namely, the parameter regimes where they exhibit (1) a normal action potential (AP) with no EADs, (2) an AP with EADs, and (3) an AP with EADs that does not go back to the resting potential. We also study the dependence of EADs on the rate of at which we pace a cell, with the specific goal of elucidating EADs that are induced by slow or fast rate pacing. In our simulations in two-and three-dimensional domains, in the presence of EADs, we find the following wave types: (A) waves driven by the fast sodium current and the L-type calcium current (Na-Ca-mediated waves); (B) waves driven only by the L-type calcium current (Ca-mediated waves); (C) phase waves, which are pseudo-travelling waves. Furthermore, we compare the wave patterns of the various wave-types (Na-Ca-mediated, Ca-mediated, and phase waves) in both these models. We find that the two models produce qualitatively similar results in terms of exhibiting Na-Ca-mediated wave patterns that are more chaotic than those for the Ca-mediated and phase waves. However, there are quantitative differences in the wave patterns of each wave type. The Na-Ca-mediated waves in the ORd model show short-lived spirals but the TP06 model does not. The TP06 model supports more Ca-mediated spirals than those in the ORd model, and the TP06 model exhibits more phase-wave patterns than does the ORd model.
Resumo:
We study the dynamical behaviors of two types of spiral-and scroll-wave turbulence states, respectively, in two-dimensional (2D) and three-dimensional (3D) mathematical models, of human, ventricular, myocyte cells that are attached to randomly distributed interstitial fibroblasts; these turbulence states are promoted by (a) the steep slope of the action-potential-duration-restitution (APDR) plot or (b) early afterdepolarizations (EADs). Our single-cell study shows that (1) the myocyte-fibroblast (MF) coupling G(j) and (2) the number N-f of fibroblasts in an MF unit lower the steepness of the APDR slope and eliminate the EAD behaviors of myocytes; we explore the pacing dependence of such EAD suppression. In our 2D simulations, we observe that a spiral-turbulence (ST) state evolves into a state with a single, rotating spiral (RS) if either (a) G(j) is large or (b) the maximum possible number of fibroblasts per myocyte N-f(max) is large. We also observe that the minimum value of G(j), for the transition from the ST to the RS state, decreases as N-f(max) increases. We find that, for the steep-APDR-induced ST state, once the MF coupling suppresses ST, the rotation period of a spiral in the RS state increases as (1) G(j) increases, with fixed N-f(max), and (2) N-f(max) increases, with fixed G(j). We obtain the boundary between ST and RS stability regions in the N-f(max)-G(j) plane. In particular, for low values of N-f(max), the value of G(j), at the ST-RS boundary, depends on the realization of the randomly distributed fibroblasts; this dependence decreases as N-f(max) increases. Our 3D studies show a similar transition from scroll-wave turbulence to a single, rotating, scroll-wave state because of the MF coupling. We examine the experimental implications of our study and propose that the suppression (a) of the steep slope of the APDR or (b) EADs can eliminate spiral-and scroll-wave turbulence in heterogeneous cardiac tissue, which has randomly distributed fibroblasts.
Resumo:
We report the phase transformations in Portland cement before and after hydration. The hydration mechanism was studied in detail by using a full Rietveld refinement of the X-ray diffraction (XRD) patterns, Fourier Transformed Infra-Red (FTIR) spectroscopy, Thermogravimetric Analysis (TGA) and Mossbauer spectroscopy at room temperature. From the Rietveld refinement of XRD data, alite, belite, celite, brown-millerite and low quartz phases were detected and quantified as major phases in dry cement powder. After hydration, calcium carbonate, portlandite and ettringite phases were found to form. A large reduction in the amounts of alite and belite phases were observed suggesting the formation of amorphous C-S-H phase and emphasizing the role of alite phase in flash setting of cement, as justified by the XRD and FTIR spectroscopy. Mossbauer spectra of all the unset samples showed quadrupole split doublets corresponding to the brownmillerite phase which remains unchanged even after about one week of hydration, suggesting that brownmillerite did not transform to other phases during initial stage of hydration process. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Affine transformations have proven to be very powerful for loop restructuring due to their ability to model a very wide range of transformations. A single multi-dimensional affine function can represent a long and complex sequence of simpler transformations. Existing affine transformation frameworks like the Pluto algorithm, that include a cost function for modern multicore architectures where coarse-grained parallelism and locality are crucial, consider only a sub-space of transformations to avoid a combinatorial explosion in finding the transformations. The ensuing practical tradeoffs lead to the exclusion of certain useful transformations, in particular, transformation compositions involving loop reversals and loop skewing by negative factors. In this paper, we propose an approach to address this limitation by modeling a much larger space of affine transformations in conjunction with the Pluto algorithm's cost function. We perform an experimental evaluation of both, the effect on compilation time, and performance of generated codes. The evaluation shows that our new framework, Pluto+, provides no degradation in performance in any of the Polybench benchmarks. For Lattice Boltzmann Method (LBM) codes with periodic boundary conditions, it provides a mean speedup of 1.33x over Pluto. We also show that Pluto+ does not increase compile times significantly. Experimental results on Polybench show that Pluto+ increases overall polyhedral source-to-source optimization time only by 15%. In cases where it improves execution time significantly, it increased polyhedral optimization time only by 2.04x.