314 resultados para MAGNETIC-STRUCTURES
Resumo:
The ligating properties of 2-aminocyclopentene-1-dithiocarboxylic acid and its S-methyl esters were investigated. Complexes with Zn(II), Cd(II) and Hg(II) halides were synthesized and characterized by infrared and proton and carbon-13 NMR studies. The results are concordant with a bidentate coordination of the -CS2 group to the metal ions
Resumo:
The effect of a magnetic field on the flow and oxygenation of an incompressible Newtonian conducting fluid in channels with irregular boundaries has been investigated. The geometric parameter δ, which is a ratio of the mean half width of the channel d to the characteristic length λ along the channel over which the significant changes in the flow quantities occur, has been used for perturbing the governing equations. Closed form solutions of the various order equations are presented for the stream function. The equations for oxygen partial pressure remain nonlinear even after perturbation, therefore a numerical solution is presented. The expressions for shear stress at a wall and pressure distributions are derived. Here the separation in the flow occurs at a higher Reynolds number than the corresponding non-magnetic case. It is found that the magnetic field has an effect on local oxygen concentration but has a little effect on the saturation length.
Resumo:
Some new observations on the phenomenon of photocapacitane on n-type silicon MOS structures under low intensities of illumination are reported. The difference between the illuminated and dark C---characteristics is automatically followed as a function of the applied bias thereby obtaining the differential photocapacitance and the resulting characteristics has been termed as the Low Intensity Differential Photocapacitance (LIDP). For an MOS capacitor, the LIDP characteristics is seen to go through a well defined maximum. The phenomenon has been investigated under different ambient conditions like light intensity, temperature, dependance of the frequency of the light etc. and it has been found that the phenomenon is due to a band excband excitation. In this connection, a novel sensitive technique for the measurement of the capacitance based upon following the frequency changes of a tank circuit is also described in some detail. It is also shown that the phenomenon can be understood by a simple theoretical model.
Resumo:
Quasi-two-dimensional oxides of the La,+,Sr,+,Mn04 system, possessing the KZNiF4 structure, show no evidence for ferromagnetic ordering in contrast to the corresponding three-dimensional La,+.Sr,MnO~ perovskites. Instead, there is an increasing tendency toward antiferromagnetic ordering with mcreasmg x m La,+,Sr,,, MnOp. Furthermore, these oxides are relatively high-resistivity materials over the entire compositional range. Substitution of Ba for Sr in La&r,.5Mn04 decreases the ferromagnetic interaction. Increasing the number of perovskite layers in SrO (La,-,Sr,MnO& causes an increase in electrical conductivity as well as ferromagnetic interaction. The oxide becomes a highly conducting ferromagnet when n 2 2.
Resumo:
The paper presents two new algorithms for the direct parallel solution of systems of linear equations. The algorithms employ a novel recursive doubling technique to obtain solutions to an nth-order system in n steps with no more than 2n(n −1) processors. Comparing their performance with the Gaussian elimination algorithm (GE), we show that they are almost 100% faster than the latter. This speedup is achieved by dispensing with all the computation involved in the back-substitution phase of GE. It is also shown that the new algorithms exhibit error characteristics which are superior to GE. An n(n + 1) systolic array structure is proposed for the implementation of the new algorithms. We show that complete solutions can be obtained, through these single-phase solution methods, in 5n−log2n−4 computational steps, without the need for intermediate I/O operations.
Resumo:
Formative time lags in nitrogen, oxygen, and dry air are measured with and without a magnetic field over a range of gas pressures (0.05 ' p ' 20.2 torr 5 kPa to 2 MPa, electric field strengths (1.8xO14 EEs 60xlO V m l) and magnetic field strengths (85xl0-4 < B ' 16x10-2 Tesla). For experiments below the Paschen minimum, the electrodes are designed to ensure that breakdown occurs over longer gaps and for experiments above the Paschen minimum, a coaxial cylindrical system is employed. The experimental technique consists of applying pulse voltages to the gap at various constant values of E/p and B/p and measuring the time lags from which the formative time lags are separated. In the gases studed, formative time lags decrease on application of a magnetic field at a given pressure for conditions below the Paschen minimum. The voltages at which the formative time lags remain the same without and with magnetic fields are determined, and electron molecule collision frequencies (v/p) are determined using the Effective Reduced Electric Field [EREF] concept. With increasing ratio of E/p in crossed fields, v/p decreases in all the three gases. Measurements above the Paschen minimum yield formative time lags which increase on application of a magnetic field. Formative time lags in nitrogen in ExB fields are calculated assuming an average collision frequency of 8.5x109 sec-1 torr 1. It is concluded that the EREF concept can be applied to explain formative time lags in ExB fields.
Resumo:
A series of quaternary metal sulfides of the general formula La3MM′S7 (M = Mn, Fe, Co; M′ = Al and M = Mg, Mn, Fe, Co, Ni; M′ = Fe) consisting of linear chains of face shared MS6 octahedra and isolated M′S4 tetrahedra has been prepared and studied. The aluminium compounds La3MAlS7 (M = Mn, Fe, Co) exhibit linear chain antiferromagnetism. Magnetic behavior of other La3MFeS7 sulfides has been examined in detail. The magnetic susceptibility of La3MgFeS7 shows that tetrahedral site Fe3+ undergoes a transition from Image to S = 2 spin state around 150 K.
Time dependent rotational flow of a viscous fluid over an infinite porous disk with a magnetic field
Resumo:
Both the semi-similar and self-similar flows due to a viscous fluid rotating with time dependent angular velocity over a porous disk of large radius at rest with or without a magnetic field are investigated. For the self-similar case the resulting equations for the suction and no mass transfer cases are solved numerically by quasilinearization method whereas for the semi-similar case and injection in the self-similar case an implicit finite difference method with Newton's linearization is employed. For rapid deceleration of fluid and for moderate suction in the case of self-similar flow there exists a layer of fluid, close to the disk surface where the sense of rotation is opposite to that of the fluid rotating far away. The velocity profiles in the absence of magnetic field are found to be oscillatory except for suction. For the accelerating freestream, (semi-similar flow) the effect of time is to reduce the amplitude of the oscillations of the velocity components. On the other hand the effect of time for the oscillating case is just the opposite.
Resumo:
(I): Mr= 168, triclinic, P1, Z=2, a= 5.596 (2), b = 6.938 (3), c = 10.852 (4) A, ~t= 75.64 (3), fl= 93.44 (3), ),= 95.47 (3) °, V= 406.0A 3, Din= 1.35 (by flotation using carbon tetrachloride and n-hexane), D x= 1.374 Mg m -3, g(Mo Kct, 2 = 0.7107 A) = 1.08 cm -l, _F(000) = 180, T= 293 K. (II): Mr= 250, triclinic, P1, Z= 2, a = 7.731(2), b=8.580(2), c=11.033(3)A, a= 97-66 (2), fl= 98.86 (2), y= 101.78 (2) °, V= 697.5 A 3, D m = 1.18 (by flotation using KI solution), Dx= 1.190Mgm -3, g(MoKa, 2=0.7107A)= 1.02 cm -1, F(000) = 272, T= 293 K. Both structures were solved by direct methods and refined to R = 4.4% for 901 reflexions for (I) and 5.7% for 2001 reflexions for (II). The C=C bond distances are 1.451 (3) A in (I) and 1.468 (3)A in (II), quite significantly longer than the C=C bond in ethylene [1.336 (2).~; Bartell, Roth, Hollowell, Kuchitsu & Young (1965). J. Chem. Phys. 42, 2683-2686]. The twist angle about the C=C bond in (II) is 72.9 (5) ° but molecule (I) is essentially planar, the twist angle being only 4.9 (5) ° .
Resumo:
A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH4I crystallizes in this structure, while NH4F is found in the ZnO structure, and NH4C1 and NH4Br occur in the CsCl structure. We show that a distributed charge on the NH4+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH4+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH4F compares well with experiment. Barring the poorly understood NH4F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH4F.
Resumo:
The magnetic moment of the Λ hyperon is calculated using the QCD sum-rule approach of Ioffe and Smilga. It is shown that μΛ has the structure μΛ=(2/3(eu+ed+4es)(eħ/2MΛc)(1+δΛ), where δΛ is small. In deriving the sum rules special attention is paid to the strange-quark mass-dependent terms and to several additional terms not considered in earlier works. These terms are now appropriately incorporated. The sum rule is analyzed using the ratio method. Using the external-field-induced susceptibilities determined earlier, we find that the calculated value of μΛ is in agreement with experiment.
Resumo:
Magnetic susceptibility studies on single crystals of nearly stoichiometric La2NiO4 with the applied field both parallel and perpendicular to the c axis show a transition at 204 K below which two-dimensional canted antiferromagnetic order seems to exist. This oxide also undergoes a transition from isotropic to anisotropic susceptibility near 100 and 250 K.
Resumo:
The Wilson coefficient corresponding to the gluon-field strength GμνGμν is evaluated for the nucleon current correlation function in the presence of a static external electromagnetic field, using a regulator mass Λ to separate the high-momentum part of the Feynman diagrams. The magnetic-moment sum rules are analyzed by two different methods and the sensitivity of the results to variations in Λ are discussed.
Resumo:
The crystal structures of (1) L-arginine D-asparate, C6HIsN40~.C4H6NO4 [triclinic, P1, a=5.239(1), b=9.544(1), c=14.064(2)A, a=85"58(1), /3=88.73 (1), ~/=84.35 (1) °, Z=2] and (2) L-arginine D-glutamate trihydrate, C6H15N40~-.CsHsNO4.3H20 [monoclinic, P2~, a=9.968(2), b=4.652(1), c=19.930 (2) A, fl = 101.20 (1) °, Z = 2] have been determined using direct methods. They have been refined to R =0.042 and 0.048 for 2829 and 2035 unique reflections respectively [I>2cr(I)]. The conformations of the two arginine molecules in the aspartate complex are different from those observed so far in the crystal structures of arginine, its salts and complexes. In both complexes, the molecules are organized into double layers stacked along the longest axis. The core of each double layer consists of two parallel sheets made up of main-chain atoms, each involving both types of molecules. The hydrogen bonds within each sheet and those that interconnect the two sheets give rise to EL-, DD- and DE-type head-to-tail sequences. Adjacent double layers in (1) are held together by side-chain-side-chain interactions whereas those in (2) are interconnected through an extensive network of water molecules which interact with sidechain guanidyl and carboxylate groups. The aggregation pattern observed in the two LD complexes is fundamentally different from that found in the corresponding EL complexes.
Resumo:
Polyaniline (PANI)/para-toluene sulfonic acid (pTSA) and PANI/pTSA-TiO2 composites were prepared using chemical method and characterized by infrared spectroscopy (IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM). The electrical conductivity and magnetic properties were also measured. In corroboration with XRD, the micrographs of SEM indicated the homogeneous dispersion of TiO nanoparticles in bulk PANI/pTSA matrix. Conductivity of the PANI/pTSA-TiO2 was higher than the PAN[/pTSA, and the maximum conductivity obtained was 9.48 (S/cm) at 5 wt% of TiO2. Using SQUID magnetometer, it was found that PANI/pTSA was either paramagnetic or weakly ferromagnetic from 300 K down to 5 K with H-C approximate to 30 Oe and M-r approximate to 0.015 emu/g. On the other hand,PANI/pTSA-TiO2 was diamagnetic from 300 K down to about 50 K and below which it was weakly ferromagnetic. Furthermore, a nearly temperature-independent magnetization was observed in both the cases down to 50 K and below which the magnetization increased rapidly (a Curie like susceptibility was observed). The Pauli susceptibility (chi(pauli)) was calculated to be about 4.8 X 10(-5) and 1.6 x 10(-5)emug(-1) Oe(-1) K for PANI/pTSA and PANI/pTSA-TiO2, respectively.