137 resultados para Load-cycle analysis


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models for electricity planning require inclusion of demand. Depending on the type of planning, the demand is usually represented as an annual demand for electricity (GWh), a peak demand (MW) or in the form of annual load-duration curves. The demand for electricity varies with the seasons, economic activities, etc. Existing schemes do not capture the dynamics of demand variations that are important for planning. For this purpose, we introduce the concept of representative load curves (RLCs). Advantages of RLCs are demonstrated in a case study for the state of Karnataka in India. Multiple discriminant analysis is used to cluster the 365 daily load curves for 1993-94 into nine RLCs. Further analyses of these RLCs help to identify important factors, namely, seasonal, industrial, agricultural, and residential (water heating and air-cooling) demand variations besides rationing by the utility. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thickness tapered laminates obtained by terminating a certain number of plies contain resin-rich areas called ‘resin pockets’ near ply drops, where high stress concentrations exist. Study of the effects of ply drops and resin pockets on the tensile behaviour of tapered laminates considering certain important parameters like taper angle, the number of plies dropped, and the fiber orientation is reported here. Estimation of the tensile strength of tapered laminates necessitates accurate determination of the state of stress near the ply-drop region, which is, in general, three-dimensional (3-D) in nature. Recognising the fact that full 3-D finite-element analysis becomes computationally exorbitant, special layered 3-D finite-element analysis is carried out. Laminates with ply drops along only one direction are analysed to elicit the nature of the local bending effects occurring near the ply drops. Complete 3-D Tsai–Wu criterion considering all the six stress components is used to obtain a quick and comparative assessment of the tensile strength of these laminates. High stress concentration zones are identified and the effects of number of plies dropped at a station and resin pocket geometry are illustrated. The mechanism of load transfer near ply drops and the local bending that occurs are described. Susceptibility of ply drop zones to the onset and subsequent growth of delaminations is also brought out.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A modified lattice model using finite element method has been developed to study the mode-I fracture analysis of heterogeneous materials like concrete. In this model, the truss members always join at points where aggregates are located which are modeled as plane stress triangular elements. The truss members are given the properties of cement mortar matrix randomly, so as to represent the randomness of strength in concrete. It is widely accepted that the fracture of concrete structures should not be based on strength criterion alone, but should be coupled with energy criterion. Here, by incorporating the strain softening through a parameter ‘α’, the energy concept is introduced. The softening branch of load-displacement curves was successfully obtained. From the sensitivity study, it was observed that the maximum load of a beam is most sensitive to the tensile strength of mortar. It is seen that by varying the values of properties of mortar according to a normal random distribution, better results can be obtained for load-displacement diagram.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In arriving at the ideal filter transfer function for an active noise control system in a duct, the effect of the auxiliary sources (generally loudspeakers) on the waves generated by the primary source has invariably been neglected in the existing literature, implying a rigid wall or infinite impedance. The present paper presents a fairly general analysis of a linear one-dimensional noise control system by means of block diagrams and transfer functions. It takes into account the passive as well as active role of a terminal primary source, wall-mounted auxiliary source, open duct radiation impedance, and the effects of mean flow and damping. It is proved that the pressure generated by a source against a load impedance can be looked upon as a sum of two pressure waves, one generated by the source against an anechoic termination and the other by reflecting the rearward wave (incident on the source) off the passive source impedance. Application of this concept is illustrated for both the types of sources. A concise closed-form expression for the ideal filter transfer function is thus derived and discussed. Finally, the dynamics of an adaptive noise control system is discussed briefly, relating its standing-wave variables and transfer functions with those of the progressive-wave model presented here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the measurement of aerodynamic loads using fiber-optic strain gauge sensors and associated signal processors at hypersonic speeds in the 300mm hypersonic wind tunnel. at the Department of Aerospace Engineering, Indian Institute of Science. Fiber-optic sensors have been developed in USA since 1990, for variety of applications in experimental stress analysis, skin friction measurement in fluid flows, smart structures, smart materials, sensing of acoustic emission and more recently in the development of compact devices for measurement of displacement, stress/strain, pressure, temperature, acceleration etc. Our group at llSc has been playing a lead role in the use of these fiber - optic sensors for successful measurement of aerodynamic loads in wind tunnels and the first ever six-component wind tunnel strain gauge balance in the world based on fiber optic sensors was built at the Indian Institute of Science in the year 1999. We report here the results of our efforts in the development of an internal strain gauge balance for high-speed wind tunnel applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simplified energy‐level scheme is proposed for the photochemical cycle of the bacteriorhodopsin molecule. Rate equations are solved for the detailed light‐induced processes based on this model and the intensity‐induced population densities in various states of the molecule at steady state are computed which are used to obtain an analytic expression for the absorption coefficient of the modulation beam. Modulation of the probe laser‐beam transmission by the modulation‐laser‐beam intensity‐induced population changes is analyzed. It is predicted that for a probe beam at 412 nm up to 82% modulation can be achieved using a laser beam intensity of 3.2 W/cm2 at 570 nm. For temperatures ∼77 K, the transmission at 610 nm can be switched from zero to 81% for modulating laser intensity of 11 W/cm2. Construction of a spatial light modulator based on bacteriorhodopsin molecules is proposed and some of its features are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. This paper proposes a methodology to tackle the problems associated with this type of application. Synchronization of converter switching with load pulses enables the converter to switch at half the load switching frequency. Low switching frequency helps in ensuring safety of HV transformer insulation and reduction of losses due to skin and proximity effect. Phase-modulated series resonant converter with ZVS is used as the power converter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents the buckling analysis of orthotropic nanoplates such as graphene using the two-variable refined plate theory and nonlocal small-scale effects. The two-variable refined plate theory takes account of transverse shear effects and parabolic distribution of the transverse shear strains through the thickness of the plate, hence it is unnecessary to use shear correction factors. Nonlocal governing equations of motion for the monolayer graphene are derived from the principle of virtual displacements. The closed-form solution for buckling load of a simply supported rectangular orthotropic nanoplate subjected to in-plane loading has been obtained by using the Navier's method. Numerical results obtained by the present theory are compared with first-order shear deformation theory for various shear correction factors. It has been proven that the nondimensional buckling load of the orthotropic nanoplate is always smaller than that of the isotropic nanoplate. It is also shown that small-scale effects contribute significantly to the mechanical behavior of orthotropic graphene sheets and cannot be neglected. Further, buckling load decreases with the increase of the nonlocal scale parameter value. The effects of the mode number, compression ratio and aspect ratio on the buckling load of the orthotropic nanoplate are also captured and discussed in detail. The results presented in this work may provide useful guidance for design and development of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the analysis and design of pile foundation used for coastal structures the prediction of cyclic response, which is influenced by the nonlinear behavior, gap (pile soil separation) and degradation (reduction in strength) of soil becomes necessary. To study the effect of the above parameters a nonlinear cyclic load analysis program using finite element method is developed, incorporating the proposed gap and degradation model and adopting an incremental-iterative procedure. The pile is idealized using beam elements and the soil by number of elastoplastic sub-element springs at each node. The effect of gap and degradation on the load-deflection behavior. elasto-plastic sub-element and resistance of the soil at ground-line have been clearly depicted in this paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Precompression, wherein the probable settlements are achieved at an accelerated pace through preloading, well before the construction is take up, has been widely used in areas of ground improvement with respect to soft clays. By applying a temporary surcharge load in excess or less than the permanent load, the soil achieves higher initial effective stress and when the final load is applied, the soil experiences, lower load increment ratio or negative load increment ratio. In this paper, based on the laboratory experiments conducted on cochin marine clays and Mangalore marine clays, attempts have been made to analyse the volume change behaviour of preloaded clays. It has been brought out that for a preloaded clay, the final load increment ratio has an important role in its behaviour. Effective preloading not only reduces the final settlement due to primary, the secondary consolidation settlement also gets reduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Designing a heat sink based on a phase change material (PCM) under cyclic loading is a critical issue. For cyclic operation, it is required that the fraction of the PCM melting during the heating cycle should completely resolidify during the cooling period, so that that thermal storage unit can be operated for an unlimited number of cycles. Accordingly, studies are carried out to find the parameters influencing the behavior of a PCM under cyclic loading. A number of parameters are identified in the process, the most important ones being the duty cycle and heat transfer coefficient (h) for cooling. The required h or the required cooling period for complete resolidification for infinite cyclic operation of a conventional PCM-based heat sink is found to be very high and unrealistic with air cooling from the surface. To overcome this problem, the conventional design is modified where h and the area exposed to heat transfer can be independently controlled. With this arrangement, the enhanced area provided for cooling keeps h within realistic limits. Analytical investigation is carried out to evaluate the thermal performance of this modified PCM-based heat sink in comparison to those with conventional designs. Experiments are also performed on both the conventional and the modified PCM-based heat sinks to validate the new findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The acoustic emission technique is used for monitoring the fatigue crack growth in plain concrete beams under three-point loading. Variable amplitude loading with step-wise increase in the maximum load is applied. The fatigue crack growth is continuously monitored using six acoustic sensors. The results of load, displacement, crack mouth opening displacement, acoustic events, and acoustic energy are simultaneously acquired during the test. It is seen that a Paris law type of relationship exists between the rate of increase of acoustic emission count per cycle and the stress intensity factor range. Using b-value analysis, different stages of fatigue fracture is explained. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article presents the studies conducted on turbocharged producer gas engines designed originally for natural gas (NG) as the fuel. Producer gas, whose properties like stoichiometric ratio, calorific value, laminar flame speed, adiabatic flame temperature, and related parameters that differ from those of NG, is used as the fuel. Two engines having similar turbochargers are evaluated for performance. Detailed measurements on the mass flowrates of fuel and air, pressures and temperatures at various locations on the turbocharger were carried out. On both the engines, the pressure ratio across the compressor was measured to be 1.40 +/- 0.05 and the density ratio to be 1.35 +/- 0.05 across the turbocharger with after-cooler. Thermodynamic analysis of the data on both the engines suggests a compressor efficiency of 70 per cent. The specific energy consumption at the peak load is found to be 13.1 MJ/kWh with producer gas as the fuel. Compared with the naturally aspirated mode, the mass flow and the peak load in the turbocharged after-cooled condition increased by 35 per cent and 30 per cent, respectively. The pressure ratios obtained with the use of NG and producer gas are compared with corrected mass flow on the compressor map.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study presents an analysis aimed at choosing between off-grid solar photovoltaic, biomass gasifier based power generation and conventional grid extension for remote village electrification. The model provides a relation between renewable energy systems and the economical distance limit (EDL) from the existing grid point, based on life cycle cost (LCC) analysis, where the LCC of energy for renewable energy systems and grid extension will match. The LCC of energy feed to the village is arrived at by considering grid availability and operating hours of the renewable energy systems. The EDL for the biomass gasifier system of 25 kW capacities is 10.5 km with 6 h of daily operation and grid availability. However, the EDL for a similar 25 kW capacity photovoltaic system is 35 km for the same number of hours of operation and grid availability. The analysis shows that for villages having low load demand situated far away from the existing grid line, biomass gasification based systems are more cost competitive than photovoltaic systems or even compared to grid extension. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Notched three point bend (TPB) specimens made with plain concrete and cement mortar were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and simultaneously acoustic emissions (AE) released were recorded during the experiments. Amplitude distribution analysis of AE released during concrete was carried out to study the development of fracture process in concrete and mortar specimens. The slope of the log-linear frequency-amplitude distribution of AE is known as the AE based b-value. The AE based b-value was computed in terms of physical process of time varying applied load using cumulative frequency distribution (Gutenberg-Richter relationship) and discrete frequency distribution (Aki's method) of AE released during concrete fracture. AE characteristics of plain concrete and cement mortar were studied and discussed and it was observed that the AE based b-value analysis serves as a tool to identify the damage in concrete structural members. (C) 2012 Elsevier Ltd. All rights reserved.