95 resultados para Linear semi-infinite optimization
Resumo:
Elastic Net Regularizers have shown much promise in designing sparse classifiers for linear classification. In this work, we propose an alternating optimization approach to solve the dual problems of elastic net regularized linear classification Support Vector Machines (SVMs) and logistic regression (LR). One of the sub-problems turns out to be a simple projection. The other sub-problem can be solved using dual coordinate descent methods developed for non-sparse L2-regularized linear SVMs and LR, without altering their iteration complexity and convergence properties. Experiments on very large datasets indicate that the proposed dual coordinate descent - projection (DCD-P) methods are fast and achieve comparable generalization performance after the first pass through the data, with extremely sparse models.
Resumo:
The present work presents the results of experimental investigation of semi-solid rheocasting of A356 Al alloy using a cooling slope. The experiments have been carried out following Taguchi method of parameter design (orthogonal array of L-9 experiments). Four key process variables (slope angle, pouring temperature, wall temperature, and length of travel of the melt) at three different levels have been considered for the present experimentation. Regression analysis and analysis of variance (ANOVA) has also been performed to develop a mathematical model for degree of sphericity evolution of primary alpha-Al phase and to find the significance and percentage contribution of each process variable towards the final outcome of degree of sphericity, respectively. The best processing condition has been identified for optimum degree of sphericity (0.83) as A(3), B-3, C-2, D-1 i.e., slope angle of 60 degrees, pouring temperature of 650 degrees C, wall temperature 60 degrees C, and 500 mm length of travel of the melt, based on mean response and signal to noise ratio (SNR). ANOVA results shows that the length of travel has maximum impact on degree of sphericity evolution. The predicted sphericity obtained from the developed regression model and the values obtained experimentally are found to be in good agreement with each other. The sphericity values obtained from confirmation experiment, performed at 95% confidence level, ensures that the optimum result is correct and also the confirmation experiment values are within permissible limits. (c) 2014 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we propose an eigen framework for transmit beamforming for single-hop and dual-hop network models with single antenna receivers. In cases where number of receivers is not more than three, the proposed Eigen approach is vastly superior in terms of ease of implementation and computational complexity compared with the existing convex-relaxation-based approaches. The essential premise is that the precoding problems can be posed as equivalent optimization problems of searching for an optimal vector in the joint numerical range of Hermitian matrices. We show that the latter problem has two convex approximations: the first one is a semi-definite program that yields a lower bound on the solution, and the second one is a linear matrix inequality that yields an upper bound on the solution. We study the performance of the proposed and existing techniques using numerical simulations.
Resumo:
Production of high tip deflection in a piezoelectric bimorph laminar actuator by applying high voltage is limited by many physical constraints. Therefore, piezoelectric bimorph actuator with a rigid extension of non-piezoelectric material at its tip is used to increase the tip deflection of such an actuator. Research on this type of piezoelectric bending actuator is either limited to first order constitutive relations, which do not include non-linear behavior of piezoelectric element at high electric field, or limited to curve fitting techniques. Therefore, this paper considers high electric field, and analytically models tapered piezoelectric bimorph actuator with a rigid extension of non-piezoelectric material at its tip. The stiffness, capacitance, effective tip deflection, block force, output strain energy, output energy density, input electrical energy and energy efficiency of the actuator are calculated analytically. The paper also discusses the multi-objective optimization of this type of actuator subjected to the mechanical and electrical constraints.
Resumo:
A lower-bound limit analysis formulation, by using two-dimensional finite elements, the three-dimensional Mohr-Coulomb yield criterion, and nonlinear optimization, has been given to deal with an axisymmetric geomechanics stability problem. The optimization was performed using an interior point method based on the logarithmic barrier function. The yield surface was smoothened (1) by removing the tip singularity at the apex of the pyramid in the meridian plane and (2) by eliminating the stress discontinuities at the corners of the yield hexagon in the pi-plane. The circumferential stress (sigma(theta)) need not be assumed. With the proposed methodology, for a circular footing, the bearing-capacity factors N-c, N-q, and N-gamma for different values of phi have been computed. For phi = 0, the variation of N-c with changes in the factor m, which accounts for a linear increase of cohesion with depth, has been evaluated. Failure patterns for a few cases have also been drawn. The results from the formulation provide a good match with the solutions available from the literature. (C) 2014 American Society of Civil Engineers.