116 resultados para Line pipes
Resumo:
It has been observed that a majority of glaciers in the Himalayas have been retreating. In this paper, we show that there are two major factors which control the advance/retreat of the Himalayan glaciers. They are the slope of the glacier and changes in the equilibrium line altitude. While it is well known, that these factors are important, we propose a new way of combining them and use it to predict retreat. The functional form of this model has been derived from numerical simulations using an ice-flow code. The model has been successfully applied to the movement of eight Himalayan glaciers during the past 25 years. It explains why the Gangotri glacier is retreating while Zemu of nearly the same length is stationary, even if they are subject to similar environmental changes. The model has also been applied to a larger set of glaciers in the Parbati basin, for which retreat based on satellite data is available, though over a shorter time period.
Resumo:
The effectiveness of different routes of equal channel angular pressing (A, B-c, and C) is studied for commercially pure copper. The stored energy and the activation energy of recrystallization for the deformed samples were quantified using differential scanning calorimetry and X-ray diffraction line profile analysis. Results of the study revealed that the dislocation density and the stored energy are higher in the case of route B-c deformed sample. The activation energy for recrystallization is lower for route B-c. (C) 2012 International Centre for Diffraction Data doi:10.1017/S0885715612000310]
Resumo:
The components of EHV/UHV lines and substations can produce significant corona. To limit the consequent Radio Interference and Audible Noise on these systems, suitable corona control rings are employed. The shapes of these rings could vary from circular to rectangular with smooth bends. Many manufacturers seem to adopt trial and error method for arriving at the final design. As such neither the present testing standard nor the final design adopted consider the practical scenario like corona produced by deposition of dirt, bird droppings, etc. The present work aims to make a first step in addressing this practically important problem. This requires an accurate evaluation of the electric field and a reliable method for the evaluation of corona inception. Based on a thorough survey of pertinent literature, the critical avalanche criteria as applicable to large electrodes, has been adopted. Taking the rain drop on the surface as the biggest protrusion, conducting protrusions modeled as semi-ellipsoid is considered as representative for deposition of dust or the boundary of bird droppings etc. Through examples of 4 00 kV and 765 kV class toroidal corona rings, the proposed method is demonstrated. This work is believed to be useful to corona ring manufacturers for EHV/UHV systems.
Resumo:
Pulse width modulation (PWM) techniques involving different switching sequences are used in space vector-based PWM generation for reducing line current ripple in induction motor drives. This study proposes a hybrid PWM technique employing five switching sequences. The proposed technique is a combination of continuous PWM, discontinuous PWM (DPWM) and advanced bus clamping PWM methods. Performance of the proposed PWM technique is evaluated and compared with those of the existing techniques on a constant volts per hertz induction motor drive. In terms of total harmonic distortion in the line current, the proposed method is shown to be superior to both conventional space vector PWM (CSVPWM) and DPWM over a fundamental frequency range of 32-50 Hz at a given average switching frequency. The reduction in harmonic distortion is about 42% over CSVPWM at the rated speed of the drive.
Resumo:
This paper presents a new approach for Optical Beam steering using 1-D linear arrays of curved wave guides as delay line. The basic structure for generating delay is the curved/bent waveguide and hence its Analytical modelling involves evaluation of mode profiles, propagation constants and losses become important. This was done by solving the dispersion equation of a bent waveguide with specific refractive index profiles. The phase shifts due to S-bends are obtained and results are compared with theoretical values. Simulations in 2-D are done using BPM and Matlab.
Resumo:
A novel scheme for generation of phase using optical delay lines is proposed. The design of the optical components in the circuit which includes the S bend waveguides and straight waveguide couplers are very important for integrated optics. Beam propagation Method and MatLab is employed for the design.
Resumo:
The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a co nvecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air si de in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the ex perimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete so ot topography. Overall soot production too was low. In case of the air side vortex abundan ce of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density fun ction, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.
Resumo:
The present work involves a computational study of soot formation and transport in case of a laminar acetylene diffusion flame perturbed by a convecting line vortex. The topology of the soot contours (as in an earlier experimental work [4]) have been investigated. More soot was produced when vortex was introduced from the air side in comparison to a fuel side vortex. Also the soot topography was more diffused in case of the air side vortex. The computational model was found to be in good agreement with the experimental work [4]. The computational simulation enabled a study of the various parameters affecting soot transport. Temperatures were found to be higher in case of air side vortex as compared to a fuel side vortex. In case of the fuel side vortex, abundance of fuel in the vort ex core resulted in stoichiometrically rich combustion in the vortex core, and more discrete soot topography. Overall soot production too was low. In case of the air side vortex abundance of air in the core resulted in higher temperatures and more soot yield. Statistical techniques like probability density function, correlation coefficient and conditional probability function were introduced to explain the transient dependence of soot yield and transport on various parameters like temperature, a cetylene concentration.
Resumo:
Abrus precatorius is highly regarded as a universal panacea in the herbal medicine with diverse pharmacological activity spectra. This experimental study on the mechanism of the anticancer activity of A. precatorius leaf extracts, may offer new evidence for A. precatorius in the treatment of breast cancer in clinical practice. Cell death was determined by using MTT assay. Further analyses were carried out by doing DNA laddering, PARP cleavage, FACS, semi-quantitative RT-PCR and detection of cellular reactive oxygen species (ROS) by DCFDA assay. A. precatorius showed very striking inhibition on MDA-MB-231 cells. MTT assay showed more than 75 % inhibition of the cells and treated cells indicated visible laddering pattern with thick compact band. PARP cleavage produced 89 kDa cleavage product which was associated with apoptosis. Flow cytometer exhibited a sub-G0/G1 peak as an indicative of apoptosis. mRNA expression level of apoptosis-related genes p21 and p53 was markedly increased in cells treated with the extract as compared to control. The up-regulation of p21 and p53 may be the molecular mechanisms by which A. precatorius extract which induces apoptosis. An increase in the concentration of A. precatorius extract does not generate ROS, instead it reduces ROS formation in MDA-MB-231 cells, as evident from the shift in fluorescence below untreated control. This is the first report showing that A. precatorius leaf extract exhibits a growth inhibitory effect by induction of apoptosis in MDA-MB-231 cells. Our results contribute towards validation of the A. precatorius extract as a potentially effective chemopreventive or therapeutic agent against breast cancer.
Resumo:
Reduction of switching surge over voltages allows an economic design of UHV transmission system with reduced insulation. The various means of switching surge over voltage control with pre-insertion resistors/closing resistors, shunt re-actors and controlled switching are illustrated. The switching surge over voltages during the energization of series compensated line are compared with uncompensated line. An Electromagnetic transients program has been developed for studying the effect of various means of control of switching transients during 765kV UHV transmission line energization. This paper presents the studies carried out on switching surges control in 765kV UHV transmission line energization.
Resumo:
This paper presents a fast and accurate relaying technique for a long 765kv UHV transmission line based on support vector machine. For a long EHV/UHV transmission line with large distributed capacitance, a traditional distance relay which uses a lumped parameter model of the transmission line can cause malfunction of the relay. With a frequency of 1kHz, 1/4th cycle of instantaneous values of currents and voltages of all phases at the relying end are fed to Support Vector Machine(SVM). The SVM detects fault type accurately using 3 milliseconds of post-fault data and reduces the fault clearing time which improves the system stability and power transfer capability. The performance of relaying scheme has been checked with a typical 765kV Indian transmission System which is simulated using the Electromagnetic Transients Program(EMTP) developed by authors in which the distributed parameter line model is used. More than 15,000 different short circuit fault cases are simulated by varying fault location, fault impedance, fault incidence angle and fault type to train the SVM for high speed accurate relaying. Simulation studies have shown that the proposed relay provides fast and accurate protection irrespective of fault location, fault impedance, incidence time of fault and fault type. And also the proposed scheme can be used as augmentation for the existing relaying, particularly for Zone-2, Zone-3 protection.
Resumo:
This brief discusses the convergence analysis of proportional navigation (PN) guidance law in the presence of delayed line-of-sight (LOS) rate information. The delay in the LOS rate is introduced by the missile guidance system that uses a low cost sensor to obtain LOS rate information by image processing techniques. A Lyapunov-like function is used to analyze the convergence of the delay differential equation (DDE) governing the evolution of the LOS rate. The time-to-go until which decreasing behaviour of the Lyapunov-like function can be guaranteed is obtained. Conditions on the delay for finite time convergence of the LOS rate are presented for the linearized engagement equation. It is observed that in the presence of line-of-sight rate delay, increasing the effective navigation constant of the PN guidance law deteriorates its performance. Numerical simulations are presented to validate the results.
Resumo:
In this work, interference alignment for a class of Gaussian interference networks with general message demands, having line of sight (LOS) channels, at finite powers is considered. We assume that each transmitter has one independent message to be transmitted and the propagation delays are uniformly distributed between 0 and (L - 1) (L >; 0). If receiver-j, j ∈{1,2,..., J}, requires the message of transmitter-i, i ∈ {1, 2, ..., K}, we say (i, j) belongs to a connection. A class of interference networks called the symmetrically connected interference network is defined as a network where, the number of connections required at each transmitter-i is equal to ct for all i and the number of connections required at each receiver-j is equal to cr for all j, for some fixed positive integers ct and cr. For such networks with a LOS channel between every transmitter and every receiver, we show that an expected sum-spectral efficiency (in bits/sec/Hz) of at least K/(e+c1-1)(ct+1) (ct/ct+1)ct log2 (1+min(i, j)∈c|hi, j|2 P/WN0) can be achieved as the number of transmitters and receivers tend to infinity, i.e., K, J →∞ where, C denotes the set of all connections, hij is the channel gain between transmitter-i and receiver-j, P is the average power constraint at each transmitter, W is the bandwidth and N0 W is the variance of Gaussian noise at each receiver. This means that, for an LOS symmetrically connected interference network, at any finite power, the total spectral efficiency can grow linearly with K as K, J →∞. This is achieved by extending the time domain interference alignment scheme proposed by Grokop et al. for the k-user Gaussian interference channel to interference networks.
Resumo:
We use information theoretic achievable rate formulas for the multi-relay channel to study the problem of optimal placement of relay nodes along the straight line joining a source node and a destination node. The achievable rate formulas that we utilize are for full-duplex radios at the relays and decode-and-forward relaying. For the single relay case, and individual power constraints at the source node and the relay node, we provide explicit formulas for the optimal relay location and the optimal power allocation to the source-relay channel, for the exponential and the power-law path-loss channel models. For the multiple relay case, we consider exponential path-loss and a total power constraint over the source and the relays, and derive an optimization problem, the solution of which provides the optimal relay locations. Numerical results suggest that at low attenuation the relays are mostly clustered close to the source in order to be able to cooperate among themselves, whereas at high attenuation they are uniformly placed and work as repeaters. We also prove that a constant rate independent of the attenuation in the network can be achieved by placing a large enough number of relay nodes uniformly between the source and the destination, under the exponential path-loss model with total power constraint.