237 resultados para Kinematic inversion
Resumo:
Given a real-valued function on R-n we study the problem of recovering the function from its spherical means over spheres centered on a hyperplane. An old paper of Bukhgeim and Kardakov derived an inversion formula for the odd n case with great simplicity and economy. We apply their method to derive an inversion formula for the even n case. A feature of our inversion formula, for the even n case, is that it does not require the Fourier transform of the mean values or the use of the Hilbert transform, unlike the previously known inversion formulas for the even n case. Along the way, we extend the isometry identity of Bukhgeim and Kardakov for odd n, for solutions of the wave equation, to the even n case.
Resumo:
The crystal structure of the N,N,N',N'-tetramethylethylenediammonium dithiocyanate salt has been examined by experimental charge density studies from high-resolution X-ray diffraction data. The corresponding results are compared with multipole refinements, using theoretical structure factors obtained from a periodic density functional theory calculation at the B3LYP level with a 6-31G** basis set. The salt crystallizes in space group P (1) over bar and contains only a single ion pair with an inversion center in the cation. The salt has thus one unique classical N+-H center dot center dot center dot(NCS)(-) hydrogen bond but also has six other weaker interactions: four C-H center dot center dot center dot S, one C-H center dot center dot center dot N, and one C-H center dot center dot center dot C-pi. The nature of all these interactions has been examined topologically using Bader's quantum theory of "atoms in molecules" and all eight of the Koch-Popelier criteria. The experimental and theoretical approaches agree well and both show that the inter-ion interactions, even in this simplest of systems, play an integrated and complex role in the packing of the ions in the crystal. Electrostatic potential maps are derived from experimental charge densities. This is the first time such a system has been examined in detail by these methods.
Resumo:
In this paper, a relative velocity approach is used to analyze the capturability of a geometric guidance law. Point mass models are assumed for both the missile and the target. The speeds of the missile and target are assumed to remain constant throughout the engagement. Lateral acceleration, obtained from the guidance law, is applied to change the path of the missile. The kinematic equations for engagements in the horizontal plane are derived in the relative velocity space. Some analytical results for the capture region are obtained for non-maneuvering and maneuvering targets. For non-maneuvering targets it is enough for the navigation gain to be a constant to intercept the target, while for maneuvering targets a time varying navigation gain is needed for interception. These results are then verified through numerical simulations.
Resumo:
Hydrographic observations were taken along two coastal sections and one open ocean section in the Bay of Bengal during the 1999 southwest monsoon, as a part of the Bay of Bengal Monsoon Experiment (BOBMEX). The coastal section in the northwestern Bay of Bengal, which was occupied twice, captured a freshwater plume in its two stages: first when the plume was restricted to the coastal region although separated from the coast, and then when the plume spread offshore. Below the freshwater layer there were indications of an undercurrent. The coastal section in the southern Bay of Bengal was marked by intense coastal upwelling in a 50 km wide band. In regions under the influence of the freshwater plume, the mixed layer was considerably thinner and occasionally led to the formation of a temperature inversion. The mixed layer and isothermal layer were of similar depth for most of the profiles within and outside the freshwater plume and temperature below the mixed layer decreased rapidly till the top of seasonal thermocline. There was no barrier layer even in regions well under the influence of the freshwater plume. The freshwater plume in the open Bay of Bengal does not advect to the south of 16 degrees N during the southwest monsoon. A model of the Indian Ocean, forced by heat, momentum and freshwater fluxes for the year 1999, reproduces the freshwater plume in the Bay of Bengal reasonably well. Model currents as well as the surface circulation calculated as the sum of geostrophic and Ekman drift show a southeastward North Bay Monsoon Current (NBMC) across the Bay, which forms the southern arm of a cyclonic gyre. The NBMC separates the very low salinity waters of the northern Bay from the higher salinities in the south and thus plays an important role in the regulation of near surface stratification. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Hydrographic observations were taken along two coastal sections and one open ocean section in the Bay of Bengal during the 1999 southwest monsoon, as a part of the Bay of Bengal Monsoon Experiment (BOBMEX). The coastal section in the northwestern Bay of Bengal, which was occupied twice, captured a freshwater plume in its two stages: first when the plume was restricted to the coastal region although separated from the coast, and then when the plume spread offshore. Below the freshwater layer there were indications of an undercurrent. The coastal section in the southern Bay of Bengal was marked by intense coastal upwelling in a 50 km wide band. In regions under the influence of the freshwater plume, the mixed layer was considerably thinner and occasionally led to the formation of a temperature inversion. The mixed layer and isothermal layer were of similar depth for most of the profiles within and outside the freshwater plume and temperature below the mixed layer decreased rapidly till the top of seasonal thermocline. There was no barrier layer even in regions well under the influence of the freshwater plume. The freshwater plume in the open Bay of Bengal does not advect to the south of 16 degrees N during the southwest monsoon. A model of the Indian Ocean, forced by heat, momentum and freshwater fluxes for the year 1999, reproduces the freshwater plume in the Bay of Bengal reasonably well. Model currents as well as the surface circulation calculated as the sum of geostrophic and Ekman drift show a southeastward North Bay Monsoon Current (NBMC) across the Bay, which forms the southern arm of a cyclonic gyre. The NBMC separates the very low salinity waters of the northern Bay from the higher salinities in the south and thus plays an important role in the regulation of near surface stratification. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The linear spin-1/2 Heisenberg antiferromagnet with exchanges J(1) and J(2) between first and second neighbors has a bond-order wave (BOW) phase that starts at the fluid-dimer transition at J(2)/J(1)=0.2411 and is particularly simple at J(2)/J(1)=1/2. The BOW phase has a doubly degenerate singlet ground state, broken inversion symmetry, and a finite-energy gap E-m to the lowest-triplet state. The interval 0.4 < J(2)/J(1) < 1.0 has large E-m and small finite-size corrections. Exact solutions are presented up to N = 28 spins with either periodic or open boundary conditions and for thermodynamics up to N = 18. The elementary excitations of the BOW phase with large E-m are topological spin-1/2 solitons that separate BOWs with opposite phase in a regular array of spins. The molar spin susceptibility chi(M)(T) is exponentially small for T << E-m and increases nearly linearly with T to a broad maximum. J(1) and J(2) spin chains approximate the magnetic properties of the BOW phase of Hubbard-type models and provide a starting point for modeling alkali-tetracyanoquinodimethane salts.
Resumo:
In this paper a nonlinear optimal controller has been designed for aerodynamic control during the reentry phase of the Reusable Launch Vehicle (RLV). The controller has been designed based on a recently developed technique Optimal Dynamic Inversion (ODI). For full state feedback the controller has required full information about the system states. In this work an Extended Kalman filter (EKF) is developed to estimate the states. The vehicle (RLV) has been has been consider as a nonlinear Six-Degree-Of-Freedom (6-DOF) model. The simulation results shows that EKF gives a very good estimation of the states and it is working well with ODI. The resultant trajectories are very similar to those obtained by perfect state feedback using ODI only.
Resumo:
The complexes, Ba (HQS) (H2O)(4) (HQS = 8-hydroxyquinoline-5-sulfonic acid) (1) and Ag (HIQS) (H2O) (Ferron = 7-iodo-8-hydroxyquinoline-5-sulfonic acid) (2) have been synthesized and characterized by X-ray diffraction analysis and spectroscopic studies. In compound 1, Ba2+ ion has a nine-coordinate monocapped antiprismatic geometry. In compound 2, Ag+ has distorted tetrahedral coordination and Ag center dot center dot center dot I interactions generate the supramolecular architectures. The complexes have been characterized by FT-IR and UV-Visible measurements. In both the structures, the inversion-related organic ligands are stacked over one another leading to three-dimensional networks.
Resumo:
Separated local field (SLF) spectroscopy is a powerful technique to measure heteronuclear dipolar couplings. The method provides site-specific dipolar couplings for oriented samples such as membrane proteins oriented in lipid bilayers and liquid crystals. A majority of the SLF techniques utilize the well-known Polarization Inversion Spin Exchange at Magic Angle (PISEMA) pulse scheme which employs spin exchange at the magic angle under Hartmann-Hahn match. Though PISEMA provides a relatively large scaling factor for the heteronuclear dipolar coupling and a better resolution along the dipolar dimension, it has a few shortcomings. One of the major problems with PISEMA is that the sequence is very much sensitive to proton carrier offset and the measured dipolar coupling changes dramatically with the change in the carrier frequency. The study presented here focuses on modified PISEMA sequences which are relatively insensitive to proton offsets over a large range. In the proposed sequences, the proton magnetization is cycled through two quadrants while the effective field is cycled through either two or four quadrants. The modified sequences have been named as 2(n)-SEMA where n represents the number of quadrants the effective field is cycled through. Experiments carried out on a liquid crystal and a single crystal of a model peptide demonstrate the usefulness of the modified sequences. A systematic study under various offsets and Hartmann-Hahn mismatch conditions has been carried out and the performance is compared with PISEMA under similar conditions.
Resumo:
A study has been made of the stereochemistry of three of the four possible configurational isomers of trimethyl 1-methylcyclohexane-1,2,3-tricarboxylate. Two of the isomers undergo highly stereoselective methylation at the 3-position; the third cannot be methylated under similar conditions. Conformations have been suggested for these three isomers on the basis of n.m.r. results. It is thought that axial ester groups at the 1-position in the first two solvate the axial protons at the 3-position and facilitate their removal by trityl anion, while in the third, which has an axial methyl at the 1-position, the effect is not possible and the anion is not formed. The role of A(1.3) strain in causing the high stereoselectivity and position-specificity in the two cases where alkylation does take place and the reasons for slow inversion at the anion centre at position 3 in one of them are discussed.
Resumo:
We present a simplified theory of the effective momentum mass (EMM) and ballistic current–voltage relationship in a degenerate two-folded highly asymmetric bilayer graphene nanoribbon. With an increase in the gap, the density-of-states in the lower set of subbands increases more than that of the upper set. This results in a phenomenological population inversion of carriers, which is reflected through a net negative differential conductance (NDC). It is found that with the increase of the ribbon width, the NDC also increases. The population inversion also signatures negative values of EMM above a certain ribbon-width for the lower set of subbands, which increases in a step-like manner with the applied longitudinal static bias. The well-known result for symmetric conditions has been obtained as a special case.
Resumo:
This paper presents a study of kinematic and force singularities in parallel manipulators and closed-loop mechanisms and their relationship to accessibility and controllability of such manipulators and closed-loop mechanisms, Parallel manipulators and closed-loop mechanisms are classified according to their degrees of freedom, number of output Cartesian variables used to describe their motion and the number of actuated joint inputs. The singularities in the workspace are obtained by considering the force transformation matrix which maps the forces and torques in joint space to output forces and torques ill Cartesian space. The regions in the workspace which violate the small time local controllability (STLC) and small time local accessibility (STLA) condition are obtained by deriving the equations of motion in terms of Cartesian variables and by using techniques from Lie algebra.We show that for fully actuated manipulators when the number ofactuated joint inputs is equal to the number of output Cartesian variables, and the force transformation matrix loses rank, the parallel manipulator does not meet the STLC requirement. For the case where the number of joint inputs is less than the number of output Cartesian variables, if the constraint forces and torques (represented by the Lagrange multipliers) become infinite, the force transformation matrix loses rank. Finally, we show that the singular and non-STLC regions in the workspace of a parallel manipulator and closed-loop mechanism can be reduced by adding redundant joint actuators and links. The results are illustrated with the help of numerical examples where we plot the singular and non-STLC/non-STLA regions of parallel manipulators and closed-loop mechanisms belonging to the above mentioned classes. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
A nonlinear adaptive system theoretic approach is presented in this paper for effective treatment of infectious diseases that affect various organs of the human body. The generic model used does not represent any specific disease. However, it mimics the generic immunological dynamics of the human body under pathological attack, including the response to external drugs. From a system theoretic point of view, drugs can be interpreted as control inputs. Assuming a set of nominal parameters in the mathematical model, first a nonlinear controller is designed based on the principle of dynamic inversion. This treatment strategy was found to be effective in completely curing "nominal patients". However, in some cases it is ineffective in curing "realistic patients". This leads to serious (sometimes fatal) damage to the affected organ. To make the drug dosage design more effective, a model-following neuro-adaptive control design is carried out using neural networks, which are trained (adapted) online. From simulation studies, this adaptive controller is found to be effective in killing the invading microbes and healing the damaged organ even in the presence of parameter uncertainties and continuing pathogen attack.
Resumo:
In this paper, the behaviour of a group of autonomous mobile agents under cyclic pursuit is studied. Cyclic pursuit is a simple distributed control law, in which the agent i pursues agent i + 1 modulo n.. The equations of motion are linear, with no kinematic constraints on motion. Behaviourally, the agents are identical, but may have different controller gains. We generalize existing results in the literature and show that by selecting these gains, the behavior of the agents can be controlled. They can be made to converge at a point or be directed to move in a straight line. The invariance of the point of convergence with the sequence of pursuit is also shown.
Resumo:
Nanostructured ZnFe2O4 ferrites with different grain sizes were prepared by high energy ball milling for various milling times. Both the average grain size and the root mean square strain were estimated from the x-ray diffraction line broadening. The lattice parameter initially decreases slightly with milling and it increases with further milling. The magnetization is found to increase as the grain size decreases and its large value is attributed to the cation inversion associated with grain size reduction. The Fe-57 Mossbauer spectra were recorded at 300 K and 77 K for the samples with grain sizes of 22 and 11 nm. There is no evidence for the presence of the Fe2+ charge state. At 77 K the Mossbauer spectra consist of a magnetically ordered component along with a doublet due to the superparamagnetic behaviour of small crystalline grains with the superparamagnetic component decreasing with grain size reduction. At 4.2 K the sample with 11 nm grain size displays a magnetically blocked state as revealed by the Mossbauer spectrum. The Mossbauer spectrum of this sample recorded at 10 K in an external magnetic field of 6 T applied parallel to the direction of gamma rays clearly shows ferrimagnetic ordering of the sample. Also, the sample exhibits spin canting with a large canting angle, maybe due to a spin-glass-like surface layer or grain boundary anisotropies in the material.