186 resultados para Ionic conduction in solids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensory nerve action potentials (SNAPs) and compound nerve action potentials (CNAPs) were recorded from 25 normal subjects and 21 hanseniasis patients following electrical stimulation of the median nerve at the wrist. The various nerve conduction parameters from the affected nerves of the patients were compared with those from the clinically normal nerves of patients as well as data from healthy individuals. Analysis of the data and clinical correlation studies indicate the suitability of amplitudes of the SNAPs and CNAPs rather than the nerve conduction velocities in better characterizing the neuropathy of the patients. Significantly reduced amplitudes of responses from clinically unaffected nerves of patients indicate an early stage of neuropathy, thus being of predictive value. Further, a discriminant classifier, trained on data from clinically affected nerves of patients, classified most of the data from clinically unaffected nerves of patients as abnormal. This indicates that clinical neurophysiological studies can reveal leprous neuropathy much before it becomes clinically evident by means of sensory or motor loss. A discriminant score involving only the parameters of motor threshold, amplitude of digit potential and palm nerve conduction velocity is able to classify almost all of the normal and abnormal responses. The authors hope that further confirmative studies might ultimately lead to the use of the study of distal sensory conduction in the upper limbs in possible screening of a population exposed to Mycobacterium leprae. On the other hand, misclassification of a normal person occurred and suggests that further refinement of the methods is necessary in order to facilitate wider use of the methods under held conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon nanofibers of 50–500 nm diameter and several micrometer length were synthesized by high-temperature pyrolysis of dihydro-2,5-furandione (C4H4O3) in the temperature range of 600–980 °C. The formation of both graphitic and non-graphitic structured carbon fibers was observed in high-resolution transmission electron microscope. The Raman spectra of the samples showed the presence of both the D and G bands of varying intensity and sharpness. The low-temperature electrical transport studies on the samples have shown interesting metal–insulator transitions. The films showed variable range hopping conduction in the insulating regime and power law behavior in the critical regime at low temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enthused by the fascinating properties of graphene, we have prepared graphene analogues of BN by a chemical method with a control on the number of layers. The method involves the reaction of boric acid with urea, wherein the relative proportions of the two have been varied over a wide range. Synthesis with a high proportion of urea yields a product with a majority of 1-4 layers. The surface area of BN increases progressively with the decreasing number of layers, and the high surface area BN exhibits high CO, adsorption, but negligible H, adsorption. Few-layer BN has been solubilized by interaction with Lewis bases. We have used first-principles simulations to determine structure, phonon dispersion, and elastic properties of BN with planar honeycomb lattice-based n-layer forms. We find that the mechanical stability of BN with respect to out-of-plane deformation is quite different from that of graphene, as evident in the dispersion of their flexural modes. BN is softer than graphene and exhibits signatures of long-range ionic interactions in its optical phonons. Finally, structures with different stacking sequences of BN have comparable energies, suggesting relative abundance of slip faults, stacking faults, and structural inhomogeneities in multilayer BN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There has been increasing interest on various properties and applications of electronically conducting polymers. Polyethylenedioxythiophene (PEDOT) is an interesting polymer of this type as it exhibits very high ionic conductivity. In the present study, PEDOT has been electrochemically deposited on stainless steel (SS) substrate for supercapacitor studies. PEDOT/SS electrodes prepared in 0.1M H2SO4 in presence of a surfactant, sodium dodecylsulphate (SDS), have been found to yield higher specific capacitance (SC) than the electrodes prepared from neutral aqueous electrolyte. The effects of concentration of H(2)SO4(,) concentration of SDS, potential of deposition, and nature of supporting electrolytes used for capacitor studies on SC of the PEDOT/SS electrodes have been studied. SC values as high as 250 F/g in 1M oxalic acid have been obtained during the initial stages of cycling. However, there is a rapid decrease in SC on repeated charge-discharge cycling. Spectroscopic data reflect structural changes in PEDOT on extended cycling. (C) 2007 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brookite, the orthorhombic modification of titanium dioxide, transforms to the tetragonal modification, rutile, on heating. The kinetics and energetics of the transformation have been studied. Below 715±10°C, the rate of transformation is extremely slow. There appears to be little or no induction time. The kinetic data can be fitted reasonably well by the first-order equation. The energy of activation is about 60 kcal/mole and the frequency factor is of the order of 1013 h-1. The entropy of activation from Eyring's theory is about -18 cal/mole deg. at 800°C. The heat of this transformation is -100±75 cal/mole. The kinetic results may be explained qualitatively in terms of various analogies but more clearly by the application of the order-disorder theory to diffusionless transformation in solids. It has been shown that the ratio of propagation rate constant to the nucleation rate constant is small and that there is little or negligible phase aggregation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Base metal (Cr, Mn, Fe, Ni, Cu) substituted CeVO4 compounds were synthesized by the solution combustion technique. These compounds were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. The characterization indicated that the base metals were substituted in the ionic state in all the compounds. These compounds were used for the photocatalytic degradation of phenol and the degradation rates obtained in the presence of these compounds werecompared against that obtained with the commercial Degussa P-25 TiO2 catalyst. Fe and Cr substituted CeVO4 showed photocatalytic activity that was comparable with that of Degussa P-25 TiO2. The concentration of toxic intermediates was high when the reaction was carried out in presence of Degussa P-25 TiO2 but it was found to be insignificant when the reaction was carried out in presence of base metal-substituted CeVO4. The effect of % Fe-substitution (varied from 1 to 5 at%) in CeVO4 on the photocatalytic activity was also investigated and it was observed that 1 at% Fe-substituted compound showed the highest activity. A mathematical model describing the kinetics of the photocatalytic degradation of phenol was developed on the basis of the catalyst structure and taking into account the formation of all the possible intermediates. The variation of the concentration of phenol and the intermediates was described by the model and the reaction rateconstants were determined. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of high hydrostatic pressure up to 1.5 GPa on ionic motion in (NH4)4Fe(CN)6.1.5H2O has been studied by wide-line 1H NMR experiments performed in the temperature range from room temperature to 77 K. The experiments at room temperature have shown a large increase in the second moment at 0.45 GPa as a result of a pressure-induced phase transition. The temperature dependence study up to 0.425 GPa has shown a gradual increase in the values of activation energy and attempt frequency with increase in pressure. The activation volume for motion at 300 K has been estimated to be 6% of molar volume. Vacancy-assisted ionic jumps are concluded to be the mode of charge transport. Second moments estimated at 77 K show evidence for tunnelling reorientation of at least one of the two NH4+ groups in the compound.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have investigated the electronic structure of Ba1-xKxBiO3 (0in Bi2O3 and we find no evidence for the disproportionation of Bi4+ to Bi3+ and Bi5+. Instead, we find that BaBiO3 has mixed valent O2- and O1- ions. As the potassium doping is increased, the binding energy of the O2- ions in the O(1s) photoelectron spectra steadily decreases from 529.7 to 528.8 eV. The effect of lowering the O(1s) binding energy is to raise the O(2p) band towards EF and at the superconducting composition a finite density of O(2p) states is observed near EF. Similarly, the Ba(5p) binding energies decrease with potassium doping, indicating increased metallicity. The behavior of the O(1s), Ba(5p), and the valence band resembles that of all the cuprate superconductors and we conclude that in all these oxide superconductors, a hole in the (filled) O(2p) band is the carrier responsible for superconductivity, which predicts hole conduction in the Ba-K-Bi-O and Ba-Pb-Bi-O systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genistein and daidzein, the major isoflavones present in soybeans, possess a wide spectrum of physiological and pharmacological functions. The binding of genistein to human serum albumin (HSA) has been investigated by equilibrium dialysis, fluorescence measurements, CD and molecular visualization. One mole of genistein is bound per mole of HSA with a binding constant of 1.5 +/- 0.2 X 10(5) m(-1). Binding of genistein to HSA precludes the attachment of daidzein. The ability of HSA to bind genistein is found to be lost when the tryptophan residue of albumin is modified with N-bromosuccinimide. At 27 degrees C (pH 7.4), van't Hoff's enthalpy, entropy and free energy changes that accompany the binding are found to be -13.16 kcal.mol(-1), -21 cal.mol(-1)K(-1) and -6.86 kcal.mol(-1), respectively. Temperature and ionic strength dependence and competitive binding measurements of genistein with HSA in the presence of fatty acids and 8-anilino-1-naphthalene sulfonic acid have suggested the involvement of both hydrophobic and ionic interactions in the genistein-HSA binding. Binding measurements of genistein with BSA and HSA, and those in the presence of warfarin and 2,3,5-tri-iodobenzoic acid and Forster energy transfer measurements have been used for deducing the binding pocket on HSA. Fluorescence anisotropy measurements of daidzein bound and then displaced with warfarin, 2,3,5-tri-iodobenzoic acid or diazepam confirm the binding of daidzein and genistein to subdomain IIA of HSA. The ability of HSA to form ternery complexes with other neutral molecules such as warfarin, which also binds within the subdomain IIA pocket, increases our understanding of the binding dynamics of exogenous drugs to HSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stabilized forms of heteropolyacids (HPAs), namely phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA), are incorporated into poly (vinyl alcohol) (PVA) cross-linked with sulfosuccinic acid (SSA) to form mixed-matrix membranes for application in direct methanol fuel cells (DMFCs). Bridging SSA between PVA molecules not only strengthens the network but also facilitates proton conduction in HPAs. The mixed-matrix membranes are characterized for their mechanical stability, sorption capability, ion-exchange capacity, and wetting in conjunction with their proton conductivity, methanol permeability, and DMFC performance. Methanol-release kinetics is studied ex situ by volume-localized NMR spectroscopy (employing point-resolved spectroscopy'') with the results clearly demonstrating that the incorporation of certain inorganic fillers in PVA-SSA viz., STA and PTA, retards the methanol-release kinetics under osmotic drag compared to Nafion, although PVA-SSA itself exhibits a still lower methanol permeability. The methanol crossover rate for PVA-SSA-HPA-bridged-mixed-matrix membranes decreases dramatically with increasing current density rendering higher DMFC performance in relation to a DMFC using a pristine PVA-SSA membrane. A peak power density of 150 mW/cm(2) at a load current density of 500 mA/cm(2) is achieved for the DMFC using a PVA-SSA-STA-bridged-mixed-matrix-membrane electrolyte. (C) 2010 The Electrochemical Society. [DOI: 10.1149/1.3465653] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(ethylene-co-vinyl acetate) (EVA) films were irradiated with a 1.2MeV electron beam at varied doses over the range 0-270kGy in order to investigate the modifications induced in its optical, electrical and thermal properties. It was observed that optical band gap and activation energy of EVA films decreased upon electron irradiation, whereas the transition dipole moment, oscillator strength and number of carbon atoms per cluster were found to increase upon irradiation. Further, the dielectric constant, the dielectric loss, and the ac conductivity of EVA films were found to increase with an increase in the dose of electron radiation. The result further showed that the thermal stability of EVA film samples increased upon electron irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycrystalline SrTiO3 films were prepared by pulsed excimer laser ablation on Si and Pt coated Si substrates. Several growth parameters were varied including ablation fluence, pressure, and substrate temperature. The structural studies indicated the presence of [100] and [110] oriented growth after annealing by rapid thermal annealing at 600-degrees-C for 60 s. Deposition at either lower pressures or at higher energy densities encouraged film growth with slightly preferred orientation. The scanning electron microscopy studies showed the absence of any significant particulates on the film surface. Dielectric studies indicated a dielectric constant of 225, a capacitance density of 3.2 fF/mum2, and a charge density of 40 fC/mum for films of 1000 nm thick. The dc conductivity studies on these films suggested a bulk limited space charge conduction in the high field regime, while the low electric fields induced an ohmic conduction. Brief time dependent dielectric breakdown studies on these films, under a field of 250 kV/cm for 2 h, did not exhibit any breakdown, indicating good dielectric strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coarse (BOn/2)-O-n+/xH(2)O (10ionic contaminants react with A(OH), solutions under refluxing conditions at 70-100 degrees C giving rise to nanoparticles of multicomponent oxides (A=Ba, Sr, Ca, Mg or Pb; B=Zr, Ti, Sn, Fe, Al or Cr). These include ABO, perovskites and their solid solutions, polytitanates, hexaferrites and related phases, aluminates with spinel or tridymite structure and chromates. The nanosized crystallites are often in metastable phases, such as cubic BaTiO3 at room temperature or superparamagnetic hexaferrites. Through the same route, luminescent phosphors of aluminates doped with rare-earth metals could be prepared. The present results indicate the general features of the gel-crystallite (G-C) conversion involving the instability of the metal hydroxide gel brought about by the disruption of the ionic pressure in the gel as a result of the faster diffusion of A(2+) ions through the solvent cavities within the gel frame work. This is accompanied by the splitting of the bridging groups like B-(OH)-B or B-O-B, leading to the breakdown of the gel into crystallites. G-C conversion has advantages as a method of synthesis of ceramics in terms of operational cost and procedural simplicity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strontium-doped lanthanum chromites, La1−xSrxCrO3, have been synthesised to investigate the effect of strontium doping on the stability and physico-chemical characteristics of the perovskite LaCrO3. Both microscopic and X-ray examinations show that the materials exist as single phase perovskite structure for all compositions up to 50 mole% strontium substitution. The materials have been further characterized by infrared and electron paramagnetic resonance spectra. These materials show a good sinterability even in air at 1773 K. Electrical conductivity of thse perovskites has been measured as a function of temperature. Electrical conductivity has been found to be a maximum at x=0.2. The observed electrical and magnetic properties are consistent with activated polaron transport as the mechanism for electrical conduction in these materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The selenium analogue of antithyroid drug methimazole (MSeI) reacts with molecular bromine to produce two different types of novel complexes depending upon the molar ratio of MSeI to Br-2 in the reaction medium: Dicationic diselenide complex with two Br- ions as counterions is produced in the reaction of MSeI with 0.5 equiv of Br-2 (MSeI/Br-2, 1.0:0.5), whereas a stable 10-Se-3 hypervalent ``T-shaped'' complex featuring a linear Br-Se-Br moiety was produced when MSeI was treated with Br-2 in an equimolar ratio (MSeI/Br-2, 1.0:1.0). A substitution at the free N-H group in MSeI alters its reactivity toward iodine/bromine. For example, the N,N-disubstituted selones exclusively produce the corresponding 10-Se-3 hypervalent ``T-shaped'' complexes in the reaction with I-2. In the presence of the lectoperoxidase/H2O2/I- system, N,N-dimethylimidazole-2-selone produces the corresponding dicationic diselenide with two I- counterions as the final metabolite. The formation of ionic species in these reactions is confirmed by single crystal X-ray diffraction studies and in some cases by Fourier transform-Raman spectroscopic investigations.