266 resultados para Inverse Jacobian
Resumo:
Given a real-valued function on R-n we study the problem of recovering the function from its spherical means over spheres centered on a hyperplane. An old paper of Bukhgeim and Kardakov derived an inversion formula for the odd n case with great simplicity and economy. We apply their method to derive an inversion formula for the even n case. A feature of our inversion formula, for the even n case, is that it does not require the Fourier transform of the mean values or the use of the Hilbert transform, unlike the previously known inversion formulas for the even n case. Along the way, we extend the isometry identity of Bukhgeim and Kardakov for odd n, for solutions of the wave equation, to the even n case.
Resumo:
Investigations on the electrical switching behavior and thermal studies using Alternating Differential Scanning Calorimetry have been undertaken on bulk, melt-quenched Ge22Te78-,Is (3 <= x <= 10) chalcohalide glasses. All the glasses studied have been found to exhibit memory-type electrical switching. The threshold voltages of Ge22Te78-I-x(x) glasses have been found to increase with the addition of iodine and the composition dependence of threshold voltages of Ge22Te78-xIx glasses exhibits a cusp at 5 at.% of iodine. Also, the variation with composition of the glass transition temperature (Tg) of Ge22Te78-I-x(x) glasses, exhibits a broad hump around this composition. Based on the present results, the composition x = 5 has been identified as the inverse rigidity percolation threshold at which Ge22Te78-I-x(x) glassy system exhibits a change from a stressed rigid amorphous solid to a flexible polymeric glass. Further, a sharp minimum is seen in the composition dependence of non-reversing enthalpy (Delta H-nr) of Ge22Te78-I-x(x) glasses at x = 5, which is suggestive of a thermally reversing window at this composition. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Rapid granular flows are defined as flows in which the time scales for the particle interactions are small compared to the inverse of the strain rate, so that the particle interactions can be treated as instantaneous collisions. We first show, using Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.6 are rapid granular flows. Since collisions are instantaneous, a kinetic theory approach for the constitutive relations is most appropriate, and we present kinetic theory results for different microscopic models for particle interaction. The significant difference between granular flows and normal fluids is that energy is not conserved in a granular flow. The differences in the hydrodynamic modes caused by the non-conserved nature of energy are discussed. Going beyond the Boltzmann equation, the effect of correlations is studied using the ring kinetic approximation, and it is shown that the divergences in the viscometric coefficients, which are present for elastic fluids, are not present for granular flows because energy is not conserved. The hydrodynamic model is applied to the flow down an inclined plane. Since energy is not a conserved variable, the hydrodynamic fields in the bulk of a granular flow are obtained from the mass and momentum conservation equations alone. Energy becomes a relevant variable only in thin 'boundary layers' at the boundaries of the flow where there is a balance between the rates of conduction and dissipation. We show that such a hydrodynamic model can predict the salient features of a chute flow, including the flow initiation when the angle of inclination is increased above the 'friction angle', the striking lack of observable variation of the volume fraction with height, the observation of a steady flow only for certain restitution coefficients, and the density variations in the boundary layers.
Resumo:
In this study, the stability of anchored cantilever sheet pile wall in sandy soils is investigated using reliability analysis. Targeted stability is formulated as an optimization problem in the framework of an inverse first order reliability method. A sensitivity analysis is conducted to investigate the effect of parameters influencing the stability of sheet pile wall. Backfill soil properties, soil - steel pile interface friction angle, depth of the water table from the top of the sheet pile wall, total depth of embedment below the dredge line, yield strength of steel, section modulus of steel sheet pile, and anchor pull are all treated as random variables. The sheet pile wall system is modeled as a series of failure mode combination. Penetration depth, anchor pull, and section modulus are calculated for various target component and system reliability indices based on three limit states. These are: rotational failure about the position of the anchor rod, expressed in terms of moment ratio; sliding failure mode, expressed in terms of force ratio; and flexural failure of the steel sheet pile wall, expressed in terms of the section modulus ratio. An attempt is made to propose reliability based design charts considering the failure criteria as well as the variability in the parameters. The results of the study are compared with studies in the literature.
Resumo:
Evidence for the generalized anomeric effect (GAE) in the N-acyl-1,3-thiazolidines, an important structural motif in the penicillins, was sought in the crystal structures of N-(4-nitrobenzoyl)-1,3-thiazolidine and its (2:1) complex with mercuric chloride, N-acetyl-2-phenyl-1,3-thiazolidine, and the (2:1) complex of N-benzoyl-1,3-thiazolidine with mercuric bromide. An inverse relationship was generally observed between the. C-2-N and C-2-S bond lengths of the thiazolidine ring, supporting the existence of the GAE. (Maximal bond length changes were similar to 0.04 angstrom for C-2-N-3, S-1-C-2, and similar to 0.08 angstrom for N-3-C-6.) Comparison with N-acylpyrrolidines and tetrahydrothiophenes indicates that both the nitrogen-to-sulphur and sulphur-to-nitrogen GAE's operate simultaneously in the 1,3-thiazolidines, the former being dominant. (This is analogous to the normal and exo-anomeric effects in pyranoses, and also leads to an interesting application of Baldwin's rules.) The nitrogen-to-sulphur GAE is generally enhanced in the mercury(II) complexes (presumably via coordination at the sulphur); a 'competition' between the GAE and the amide resonance of the N-acyl moiety is apparent. There is evidence for a 'push-pull' charge transfer between the thiazolidine moieties in the mercury(II) complexes, and for a 'back-donation' of charge from the bromine atoms to the thiazolidine moieties in the HgBr2 complex. (The sulphur atom appears to be sp(2) hybridised in the mercury(II) complexes, possibly for stereoelectronic reasons.) These results are apparently relevant to the mode of action of the penicillins. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R-2 rather than as R-6, suggested by the Foumlrster type of dipolar approximation. Our time-evolution study alsom shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Foumlrster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Foumlrster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Foumlrster theory since the one-photon transition intensity to these states (from the ground state) is zero.
Resumo:
Three model dipeptides containing a dehydroalanine residue (Ala) at the C-terminal, Boc-X-Ala-NHCH3 [X = Ala, Val, and Phe,] have been synthesized and their solution conformations investigated by 1H-NMR, IR, and CD spectroscopy. NMR studies on these peptides in CDCl3 clearly indicate that the NH group of dehydroalanine is involved in an intramolecular hydrogen bond. This conclusion is supported by IR studies also. Nuclear Overhauser effect (NOE) studies are also accommodative of an inverse -turn-type of conformation that is characterised by conformational angles of -70° and +70° around the X residue, and a C[stack i+1 ]H-Ni+2H interproton distance of 2.5 Å. It appears that unlike dehydrophenylalanine or dehydroleucine, which tend to stabilize -turn type of structures occupying the i + 2 position of the turn, dehydroalanine favors the formation of an inverse -turn, centered at the proceeding L-residue in such solvents as CDCl3 and (CD3)2SO. A comparison of solution conformation of Boc Val-Ala-NHCH3 with the corresponding saturated analogue, Boc-Val-Ala-NHCH3, is also presented and shows that dehydroalanine is responsible for inducing the turn structure. It may be possible to design peptides with different preferred conformations using the suitable dehydroamino acid.
Resumo:
The layered double hydroxides (LDHs) of Co with trivalent cations decompose irreversibly to yield oxides with the spinel structure. Spinel formation is aided by the oxidation of Co(II) to Co(III) in the ambient atmosphere. When the decomposition is carried out under N-2, the oxidation of Co(II) is suppressed, and the resulting oxide has the rock salt structure. Thus, the Co-Al-CO32-/Cl- LDHs yield oxides of the type Co1- Al-x(2x/3)rectangle O-x/3, which are highly metastable, given the large defect concentration. This defect oxide rapidly reverts back to the original hydroxide on soaking in a Na2CO3 solution. Interlayer NO3- anions, on the other hand, decompose generating a highly oxidizing atmosphere, whereby the Co-Al-NO3- LDH decomposes to form the spinel phase even in a N-2 atmosphere. The oxide with the defect rock salt structure formed by the thermal decomposition of the Co-Fe-CO32- LDH under N2, on soaking in a Na2CO3 solution, follows a different kinetic pathway and undergoes a solution transformation into the inverse spinel Co(Co, Fe)(2)O-4. Fe3+ has a low octahedral crystal field stabilization energy and therefore prefers the tetrahedral coordination offered by the structure of the inverse spinel rather than the octahedral coordination of the parent LDH. Similar considerations do not hold in the case of Ga- and In-containing LDHs, given the considerable barriers to the diffusion of M3+ (M=Ga, In) from octahedral to tetrahedral sites owing to their large size. Consequently, the In-containing oxide residue reverts back to the parent hydroxide, whereas this reconstruction is partial in the case of the Ga-containing oxide. These studies show that the reversible thermal behavior offers a competing kinetic pathway to spinel formation. Suppression of the latter induces the reversible behavior in an LDH that otherwise decomposes irreversibly to the spinel.
Resumo:
Use of precoding transforms such as Hadamard Transforms and Phase Alteration for Peak to Average Power Ratio (PAPR) reduction in OFDM systems are well known. In this paper we propose use of Inverse Discrete Fourier Transform (IDFT) and Hadamard transform as precoding transforms in MIMO-OFDM systems to achieve low peak to average power ratio (PAPR). We show that while our approach using IDFT does not disturb the diversity gains of the MIMO-OFDM systems (spatial, temporal and frequency diversity gains), it offers a better trade-off between PAPR reduction and ML decoding complexity compared to that of the Hadamard transform precoding. We study in detail the amount of PAPR reduction achieved for the following two recently proposed full-diversity Space-Frequency coded MIMO-OFDM systems using both the IDFT and the Hadamard transform: (i) W. Su. Z. Safar, M. Olfat, K. J. R. Liu (IEEE Trans. on Signal Processing, Nov. 2003), and (ii) W. Su, Z. Safar, K. J. R. Liu (IEEE Trans. on Information Theory, Jan. 2005).
Resumo:
Sepsis is the leading cause of death in intensive care units and results from a deleterious systemic host response to infection. Although initially perceived as potentially deleterious, catalytic antibodies have been proposed to participate in removal of metabolic wastes and protection against infection. Here we show that the presence in plasma of IgG endowed with serine protease-like hydrolytic activity strongly correlates with survival from sepsis. Variances of catalytic rates of IgG were greater in the case of patients with severe sepsis than healthy donors (P < 0.001), indicating that sepsis is associated with alterations in plasma levels of hydrolytic IgG. The catalytic rates of IgG from patients who survived were significantly greater than those of IgG from deceased patients (P < 0.05). The cumulative rate of survival was higher among patients exhibiting high rates of IgG-mediated hydrolysis as compared with patients with low hydrolytic rates (P < 0.05). An inverse correlation was also observed between the markers of severity of disseminated intravascular coagulation and rates of hydrolysis of patients' IgG. Furthermore, IgG from three surviving patients hydrolyzed factor VIII, one of which also hydrolyzed factor IX, suggesting that, in some patients, catalytic IgG may participate in the control of disseminated microvascular thrombosis. Our observations provide the first evidence that hydrolytic antibodies might play a role in recovery from a disease.
Resumo:
1. 1. Biosynthetic experiments in vitro with slices of livers from normal and vitamin A-deficient rats confirmed that synthesis of ubiquinone did not increase in vitamin A deficiency. 2. 2. During development of deficiency of vitamin A in the rat, there was a definite increase in the synthesis of ubiquinone at the 10-days stage but this reverted to low, initial level by 20 days and after. 3. 3. Vitamin A analogues, 3-dehydroretinal, 5,6-monoepoxyretinal and retinoic acid, which supported growth have restored ubiquinone concentration to the normal levels and relieved the lowering in its catabolism. The biologically inert 5,8-monoepoxyretinal was the least active of the analogues tested. 4. 4. The concentration and synthesis of ubiquinone in the liver decreased under conditions of hypervitaminosis A. 5. 5. The experimental evidence does not support the hypothesis of inverse relationship between vitamin A and ubiquinone synthesis.
Resumo:
The propagation of a shock wave of finite strength due to an explosion into inhomogeneous nongravitating and self-gravitating systems has been considered, using similarity principles, supposing that the density varies as an inverse power of distance from the centre of explosion. A large number of systems, characterised by different density exponents and different adiabatic coefficients of the gas have been considered for different shock strengths. The numerical integration from the shock inward has been continued to the surface of singularity where density tends to infinity and which acts like a piston in the self-gravitating case and to the surface where the velocity gradient tends to infinity in the nongravitating case. The effect of variation of shock strength, density exponent and adiabatic coefficient on the location of these singularities and on the distribution of flow parameters behind the shock has been studied. The initial energy of the system and the manner of release of the explosion energy influence strongly the flow behind the shock. The results have been graphically depicted.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time,recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through a pseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets of measurements involving various load cases, we expedite the speed of thePD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small.
Resumo:
We explore the application of pseudo time marching schemes, involving either deterministic integration or stochastic filtering, to solve the inverse problem of parameter identification of large dimensional structural systems from partial and noisy measurements of strictly static response. Solutions of such non-linear inverse problems could provide useful local stiffness variations and do not have to confront modeling uncertainties in damping, an important, yet inadequately understood, aspect in dynamic system identification problems. The usual method of least-square solution is through a regularized Gauss-Newton method (GNM) whose results are known to be sensitively dependent on the regularization parameter and data noise intensity. Finite time, recursive integration of the pseudo-dynamical GNM (PD-GNM) update equation addresses the major numerical difficulty associated with the near-zero singular values of the linearized operator and gives results that are not sensitive to the time step of integration. Therefore, we also propose a pseudo-dynamic stochastic filtering approach for the same problem using a parsimonious representation of states and specifically solve the linearized filtering equations through apseudo-dynamic ensemble Kalman filter (PD-EnKF). For multiple sets ofmeasurements involving various load cases, we expedite the speed of the PD-EnKF by proposing an inner iteration within every time step. Results using the pseudo-dynamic strategy obtained through PD-EnKF and recursive integration are compared with those from the conventional GNM, which prove that the PD-EnKF is the best performer showing little sensitivity to process noise covariance and yielding reconstructions with less artifacts even when the ensemble size is small. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Detailed high-temperature compression creep experiments on a pure 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) and 3YTZ doped with 4.8 wt% TiO2 revealed that both materials exhibit a similar transition in stress exponents from n similar to 1 to n similar to 2 with a decrease in stress. The stress exponent of 1 and the inverse grain size dependence p of similar to 3 are consistent with the Coble diffusion creep at high stresses; the increase in stress exponent at low stresses is attributed to an interface-controlled diffusion creep process. Measurements revealed that grain-boundary sliding contributes to >similar to 50% of the total strain in both regions with n similar to 1 and n similar to 2, indicating the operation of the same fundamental deformation process in both regions. The creep data indicate that doping with TiO2 leads to an increase in the grain-boundary diffusion coefficients. The increase observed in the dihedral angle with doping is also consistent with the increase in grain boundary diffusion coefficient and the reported enhanced ductility in such materials.