159 resultados para Hotels presence
Resumo:
Activation of the B-H sigma-bond of amine-boranes on the chromium(0) center of arene chromium tricarbonyl complexes (eta(6)-arene) Cr(CO)(3) (arene = fluorobenzene, 1a; benzene, 1b and mesitylene, 1c) has been studied. Photolysis of 1b in presence of ammonia-borane (H3N center dot BH3, AB) and tert-butylamine-borane ((BuH2N)-Bu-t center dot BH3, TBAB) resulted in H-2 evolution and precipitation of a BNHx polymer. On the other hand, photolysis in the presence of trimethylamine-borane (Me3N center dot BH3, TMAB) resulted in the formation of a sigma-borane complex (2) along with Cr(CO)(5)(eta(1)-HBH2 center dot NMe3) (3). The sigma-borane complexes (eta(6)-arene) Cr-( CO)(2)(eta(1)-HBH2 center dot NMe3) (arene = fluorobenzene, 2a; benzene, 2b and mesitylene, 2c) were characterized in solution by H-1, B-11, and C-13 NMR spectroscopy. Electron withdrawing substituents on the arene ring provide the more stable sigma-borane moiety in this series of complexes. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.
Resumo:
A combination of numerical and analytical techniques is used to analyse the effect of magnetic field and encapsulated layer on the onset of oscillatory Marangoni instability in a two layer system. Oscillatory Marangoni instability is possible for a deformed free surface only when the system is heated from above. It is observed that the existence of a second layer has a positive effect on Marangoni overstability with magnetic field whereas it has an opposite effect without magnetic field.
Resumo:
The steady state throughput performance of distributed applications deployed in switched networks in presence of end-system bottlenecks is studied in this paper. The effect of various limitations at an end-system is modelled as an equivalent transmission capacity limitation. A class of distributed applications is characterised by a static traffic distribution matrix that determines the communication between various components of the application. It is found that uniqueness of steady state throughputs depends only on the traffic distribution matrix and that some applications (e.g., broadcast applications) can yield non-unique values for the steady state component throughputs. For a given switch capacity, with traffic distribution that yield fair unique throughputs, the trade-off between the end-system capacity and the number of application components is brought out. With a proposed distributed rate control, it has been illustrated that it is possible to have unique solution for certain traffic distributions which is otherwise impossible. Also, by proper selection of rate control parameters, various throughput performance objectives can be realised.
Resumo:
In uplink orthogonal frequency division multiple access (OFDMA), carrier frequency offsets (CFO) and/or timing offsets (TO) of other users with respect to a desired user can cause significant multiuser interference (MUI). In this paper, we derive an analytical bit error rate (BER) expression that quantify the degradation in BER due to the combined effect of both CFOs and TOs in uplink OFDMA on Rician fading channels. Such an analytical BER derivation for uplink OFDMA with CFOs and TOs on Rician fading channels has not been reported so far. For the case of non-zero CFOs/TOs, we obtain an approximate BER expression involving a single integral. Analytical and simulation BER results are shown to match very well.
Resumo:
instead of using chemical-reducing agents to facilitate the reduction and dissolution of manganese and iron oxide in the ocean nodule, electrochemical reduction based on two approaches, namely, cathodic polarization and galvanic interaction, can also be considered as attractive alternatives. Galvanic leaching of ocean nodules in the presence of pyrite and pyrolusite for complete recovery of Cu, Ni and Co has been discussed. The key for successful and efficient dissolution of copper, nickel and cobalt from ocean nodules depends on prior reduction of the manganese and ferric oxides with which the above valuable nonferrous metals are interlocked. Polarization studies using a slurry electrode system indicated that maximum dissolution of iron and manganese due to electrochemical reduction occurred at negative DC potentials of -600 mV (SCE) and -1400 mV (SCE). The present work is also relevant to galvanic bioleaching of ocean nodules using autotrophic microorganisms, such as Thiobacillus ferrooxidans and T thiooxidans, which resulted in significant dissolution of copper, nickel and cobalt at the expense of microbiologically generated acids. Various electrochemical and biochemical mechanisms are outlined and the electroleaching and galvanic processes so developed are shown to yield almost complete dissolution of all metal values. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Real-time kinetics of ligand-ligate interaction has predominantly been studied by either fluorescence or surface plasmon resonance based methods. Almost all such studies are based on association between the ligand and the ligate. This paper reports our analysis of dissociation data of monoclonal antibody-antigen (hCG) system using radio-iodinated hCG as a probe and nitrocellulose as a solid support to immobilize mAb. The data was analyzed quantitatively for a one-step and a two-step model. The data fits well into the two-step model. We also found that a fraction of what is bound is non-dissociable (tight-binding portion (TBP)). The TBP was neither an artifact of immobilization nor does it interfere with analysis. It was present when the reaction was carried out in homogeneous solution in liquid phase. The rate constants obtained from the two methods were comparable. The work reported here shows that real-time kinetics of other ligand-ligate interaction can be studied using nitrocellulose as a solid support. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A class of I boundary value problems involving propagation of two-dimensional surface water waves, associated with water of uniform finite depth, against a plane vertical wave maker is investigated under the assumption that the surface is covered by a thin sheet of ice. It is assumed that the ice-cover behaves like a thin isotropic elastic plate. Then the problems under consideration lead to those of solving the two-dimensional Laplace equation in a semi-infinite strip, under Neumann boundary conditions on the vertical boundary as well as on one of the horizontal boundaries, representing the bottom of the fluid region, and a condition involving upto fifth order derivatives of the unknown function on the top horizontal ice-covered boundary, along with the two appropriate edge-conditions, at the ice-covered corner, ensuring the uniqueness of the solutions. The mixed boundary value problems are solved completely, by exploiting the regularity property of the Fourier cosine transform.
Resumo:
Recent results and data suggest that high magnetic fields in neutron stars (NS) strongly affect the characteristics (radius, mass) of the star. Such stars are even separated into a class known as magnetars, for which the surface magnetic field is greater than 10(14) G. In this work we discuss the effect of such a high magnetic field on the phase transition of a NS to a quark star (QS). We study the effect of magnetic field on the transition from NS to QS including the magnetic-field effect in the equation of state (EoS). The inclusion of the magnetic field increases the range of baryon number densities for which the flow velocities of the matter in the respective phase are finite. The magnetic field helps in initiation of the conversion process. The velocity of the conversion front, however, decreases due to the presence of the magnetic field, as the presence of the magnetic field reduces the effective pressure (P). The magnetic field of the star is decreased by the conversion process, and the resultant QS has lower magnetic field than the initial NS.
Resumo:
Nanocrystalline tin oxide powder was prepared using a solution precipitation technique after adding the surfactant sodium bis (2-ethylhexyl) sulfosuccinate (AOT). Powders were characterized using X-ray diffraction (XRD), surface area (BET) and transmission electron microscopy (TEM). The gas sensitivity for surfactant added powders increased for liquid petroleum gas (LPG) as well as compressed natural gas (CNG), due to the decreased particle size and the increased surface area. The LPG gas sensitivity increased several times using phosphorus treated surfactant AOT.
Resumo:
In many industrial casting processes, knowledge of the solid fraction evolution during the solidification process is a key factor in determining the process parameters such as cooling rate, stirring intensity and in estimating the total solidification time. In the present work, a new method of estimating solid fraction is presented, which is based on calorimetric principles. In this method, the cooling curve data at each point in the melt, along with the thermal boundary conditions, are used to perform energy balance in the mould, from which solid fraction generation during any time interval can be estimated. This method is applied to the case of a rheocasting process, in which Al-Si alloy (A356 alloy) is solidified by stirring in a cylindrical mould placed in the annulus of a linear electromagnetic stirrer. The metal in the mould is simultaneously cooled and stirred to produce a cylindrical billet with non-dendritic globular microstructure. Temperature is measured at key locations in the mould to assess the various heat exchange processes prevalent in the mould and to monitor the solidification rate. The results obtained by energy balance method are compared with those by the conventional procedure of calculating solid fraction using the Schiel equation.
Studies on Transport Phenomena in Rheocasting of Al-Si alloy in Presence of Electromagnetic Stirring